
6.867 Machine learning and neural networks

FALL 2001 – Final exam

November 27, 2002

(2 points) Your name and MIT ID #:

(4 points) The grade you would give to yourself + brief justification. If you
feel that there’s no question that your grade should be A (and you feel we agree with
you) then just write “A”.

Problem 1

1. (T/F – 2 points) The sequence of output symbols sampled from a
hidden Markov model satisfies the first order Markov property

F

2. (T/F – 2 points) Increasing the number of values for the the hid-
den states in an HMM has much greater effect on the computational
cost of forward-backward algorithm than increasing the length of the
observation sequence.

T
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3. (T/F – 2 points) In HMMs, if there are at least two distinct most
likely hidden state sequences and the two state sequences cross in the
middle (share a single state at an intermediate time point), then there
are at least four most likely state sequences.

T

4. (T/F – 2 points) One advantage of Boosting is that it does not overfit. F

5. (T/F – 2 points) Support vector machines are resistant to outliers,
i.e., very noisy examples drawn from a different distribution.

F

6. (T/F – 2 points) Active learning can substantially reduce the number
of training examples that we need.

T

Problem 2

Consider two classifiers: 1) an SVM with a quadratic (second order polynomial) kernel
function and 2) an unconstrained mixture of two Gaussians model, one Gaussian per class
label. These classifiers try to map examples in R2 to binary labels. We assume that the
problem is separable, no slack penalties are added to the SVM classifier, and that we have
sufficiently many training examples to estimate the covariance matrices of the two Gaussian
components.

1. (T/F – 2 points) The two classifiers have the same VC-dimension. T

2. (4 points) Suppose we evaluated the structural risk minimization score for the two
classifiers. The score is the bound on the expected loss of the classifier, when the
classifier is estimated on the basis of n training examples. Which of the two classifiers
might yield the better (lower) score? Provide a brief justification.

The SVM would probably get a better score. Both classifiers have the same com-
plexity penalty but SVM would better optimize the training error resulting in a
lower (or equal) overall score.
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3. (4 points) Suppose now that we regularize the estimation of the covariance matrices
for the mixture of two Gaussians. In other words, we would estimate each class
conditional covariance matrix according to

Σ̂reg =
n

n + n′
Σ̂ +

n′

n + n′
S (1)

where n is the number of training examples, Σ̂ is the unregularized estimate of the
covariance matrix (sample covariance matrix of the examples in one class), S is our
prior covariance matrix (same for both classes), and n′ the equivalent sample size
that we can use to balance between the prior and the data.

In computing the VC-dimension of a classifier, we can choose the set of points that
we try to “shatter”. In particular, we can scale any k points by a large factor and
use the resulting set of points for shattering. In light of this, would you expect our
regularization to change the VC-dimension? Why or why not?

No. We can scale the points so that the sample covariance matrix becomes very
large in comparison to the prior, essentially washing away any effect from the prior.

4. (T/F – 2 points) Regularization in the above sense would improve
the structural risk minimization score for the mixture of two Gaussians.

F
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Problem 3

The problem here is to predict the identity of a person based on a single handwritten
character. The observed characters (one of ’a’, ’b’, or ’c’) are transformed into binary 8
by 8 pixel images. There are four different people we need to identify on the basis of such
characters. To do this, we have a training set of about 200 examples, where each example
consists of a binary 8x8 image and the identity of the person it belongs to. You can assume
that the overall number of occurences of each person and each character in the training set
is roughly balanced.

We would like to use a mixture of experts architecture to solve this problem.

1. (2 points) How might the experts be useful ? Suggest what task each expert might
solve.

Each expert would be responsible for classifying by a single digit; this corresponds
to a mixture of 3 experts.

2. (4 points) Draw a graphical model that describes the mixture of experts architecture
in this context. Indicate what the variables are and the number of values that they
can take. Shade any nodes corresponding to variables that are always observed.

y

i

xx x
1 2 64

i ∈ 1, 2, 3 - the digit type; y ∈ 1, 2, 3, 4 - the
identity; xj - pixels (binary).
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3. (4 points) Before implementing the mixture of experts architecture, we need to know
the parametric form of the conditional probabilities in your graphical model. Provide
a reasonable specification of the relevant conditional probabilities to the extent that
you could ask your class-mate to implement the classifier.

We need to specify P (i|x) and P (y|i, x). P (i|x) is a softmax regression model, taking
as input x represented as a binary vector. P (y|i, x) is also a softmax regression
model, where we have a different set of weights for each value of i.

4. (4 points) So we implemented your method, ran the estimation algorithm once,
and measured the test performance. The method was unfortunately performing at
a chance level. Provide two possible explanations for this. (there may be multiple
correct answers here)

Problem 1: there are too few training examples. We have 200/(4*3) which is ap-
proximately 10 training examples per expert.
Problem 2: like in mixture models, we might converge to a locally optimal solution.

5. (3 points) Would we get anything reasonable out of the estimation if, initially,
all the experts were identical while the parameters of the gating network would be
chosen randomly? By reasonable we mean training performance. Provide a brief
justification.
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Yes, the training examples would be assigned to experts with different probabilities
because of the gating network. This would ensure that the M-step of the EM
algorithm would make the experts different. Note that the posterior probability of
assigning examples to different experts is based on both the gating network and how
well each expert can predict the output from the input.

6. (3 points) Would we get anything reasonable out the estimation if now the gating
network is initially set so that it assigns each training example uniformly to all experts
but the experts themselves are initialized with random parameter values? Again,
reasonable refers to the training error. Provide a brief justification.

Yes. Again, the posterior is based on both the gating network and the experts. In
this case, the experts would make different predictions resulting in different posterior
assignments of examples to experts. The gating network would be modified on the
basis of these assignments.

Problem 4

Consider the following pair of observed sequences:

Sequence 1 (st): A A T T G G C C A A T T G G C C ...

Sequence 2 (xt): 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 ...

Position t: 0 1 2 3 4 ...

where we assume that the pattern (highlighted with the spaces) will continue forever. Let
st ∈ {A,G, T, C}, t = 0, 1, 2, . . . denote the variables associated with the first sequence,
and xt ∈ {1, 2}, t = 0, 1, 2, . . . the variables characterizing the second sequence. So, for
example, given the sequences above, the observed values for these variables are s0 = A, s1 =
A, s2 = C, . . ., and, similarly, x0 = 1, x1 = 1, x2 = 2, . . ..

1. (4 points) If we use a simple first order homogeneous markov model to predict the
first sequence (values for st only), what is the maximum likelihood solution that we
would find? In the transition diagram below, please draw the relevant transitions and
the associated probabilities (this should not require much calculation)
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G
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. . . . . .

st
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. . . . . .

All the transition probabilities are 1/2.

2. (T/F – 2 points) The resulting first order Markov model is ergodic T

3. (4 points) To improve the Markov model a bit we would like to define a graphical
model that predicts the value of st on the basis of the previous observed values
st−1, st−2, . . . (looking as far back as needed). The model parameters/structure are
assumed to remain the same if we shift the model one step. In other words, it is the
same graphical model that predicts st on the basis of st−1, st−2, . . . as the model that
predicts st−1 on the basis of st−2, st−3, . . .. In the graph below, draw the minimum
number of arrows that are needed to predict the first observed sequence perfectly
(disregarding the first few symbols in the sequence). Since we slide the model along
the sequence, you can draw the arrows only for st.

stst−1st−2st−3st−4

. . . . . .
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stst−1st−2st−3st−4

. . . . . .

4. Now, to incorporate the second observation sequence, we will use a standard hidden
Markov model:

stst−1st−2st−3st−4

. . . . . .

. . . . . .

xtxt−1xt−2xt−3xt−4

where again st ∈ {A,G, T, C} and xt ∈ {1, 2}. We will estimate the parameters of
this HMM in two different ways.

(I) Treat the pair of observed sequences (st, xt) (given above) as complete observa-
tions of the variables in the model and estimate the parameters in the maximum
likelihood sense. The initial state distribution P0(s0) is set according to the over-
all frequency of symbols in the first observed sequence (uniform).

(II) Use only the second observed sequence (xt) in estimating the parameters, again
in the maximum likelihood sense. The initial state distribution is again uniform
across the four symbols.

We assume that both estimation processes will be successfull relative to their criteria.

a) (3 points) What are the observation probabilities P (x|s) (x ∈ {1, 2}, s ∈
{A,G, T, C}) resulting from the first estimation approach? (should not require
much calculation)

P (x = 1|s = A) = 1, P (x = 1|s = G) = 1, P (x = 2|s = T ) = 1, P (x = 2|s = C) =
1, all other probabilities are zero.

b) (3 points) Which estimation approach is likely to yield a more accurate model
over the second observed sequence (xt)? Briefly explain why.
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The second one (II) since we can use the available four states to exactly capture the
variability in the xt sequence. Using the observation probabilities above, we’d get
a model which assigns probability 1/4 to each observed sequence of the above type
(the only thing to predict is the starting state).

5. Consider now the two HMMs resulting from using each of the estimation approaches
(approaches I and II above). These HMMs are estimated on the basis of the pair of
observed sequences given above. We’d like to evaluate the probability that these two
models assign to a new (different) observation sequence 1 2 1 2, i.e., x0 = 1, x1 =
2, x2 = 1, x3 = 2. For the first model, for which we have some idea about what the
st variables will capture, we also want to know the the associated most likely hidden
state sequence. (these should not require much calculation)

a) (2 points) What is the probability that the first model (approach I) assigns to
this new sequence of observations?

1/16

b) (2 points) What is the probability that the second model (approach II) gives
to the new sequence of observations?

zero (generates only repeated symbol sequences of the type 1 1 2 2 ...)

c) (2 points) What is the most likely hidden state sequence in the first model
(from approach I) associated with the new observed sequence?

A T G C
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6. (4 points) Finally, let’s assume that we observe only the second sequence (xt) (the
same sequence as given above). In building a graphical model over this sequence we
are no longer limiting ourselves to HMMs. However, we only consider models whose
structure/parameters remain the same as we slide along the sequence. The variables
st are included as before as they might come handy as hidden variables in predicting
the observed sequence.

a) In the figure below, draw the arrows that any reasonable model selection criterion
would find given an unlimited supply of the observed sequence xt, xt+1, . . .. You
only need to draw the arrows for the last pair of variables in the graphs, i.e.,
(st, xt)).

stst−1st−2st−3st−4

. . . . . .

. . . . . .

xtxt−1xt−2xt−3xt−4

stst−1st−2st−3st−4

. . . . . .

. . . . . .

xtxt−1xt−2xt−3xt−4

b) Given only a small number of obervations, the model selection criterion might
select a different model. In the figure below, indicate a possible alternative
model that any reasonable model selection criterion would find given only a few
examples. You only need to draw the arrows for the last pair of variables in the
graphs, i.e., (st, xt)).

stst−1st−2st−3st−4

. . . . . .

. . . . . .

xtxt−1xt−2xt−3xt−4

We could select the model corresponding to 0-order Markov chain (no arrows!). It
will typically be preferred to the 1-order one which doesn’t add to the performance,
but is more expensive.
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Problem 5

x1 x2

x3 x4x5

x6

BA

Figure 1: Decision makers A and B and their “context”

The Bayesian network in figure 1 claims to model how two people, call them A and B, make
decisions in different contexts. The context is specified by the setting of the binary context
variables x1, x2, . . . , x6. The values of these variables are not known unless we specifically
ask for such values.

1. (6 points) We are interested in finding out what information we’d have to acquire
to ensure that A and B will make their decisions independently from one another.
Specify the smallest set of context variables whose instantiation would render A and
B independent. Briefly explain your reasoning (there may be more than one strategy
for arriving at the same decision)

Context variables = {x5 and x1} or {x5 and x2}.
Since x6 is unobserved, it “drops out”. We have to find the remaining context
variables that serve as common causes for the decisions. x5 is one but knowing it’s
value would render x1 and x2 dependent. So we have to additionally observe one of
them.
You could also solve this by formally using the d-separation criterion.

2. (T/F – 2 points) We can in general achieve independence with less
information, i.e., we don’t have to fully instantiate the selected context
variables but provide some evidence about their values

F
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3. (4 points) Could your choice of the minimal set of context variables change if we
also provided you with the actual probability values associated with the dependencies
in the graph? Provide a brief justification.

Our answers could change. The probability values might imply additional indepen-
dencies and therefore reduce the number of context variables we have to know the
values for.

Additional set of figures
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. . . . . .
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