
6.867 Machine Learning

Solutions for Problem Set 1

Monday, September 22

Part 1: Least-Squares Regression

Problem 1

(1-1) (5pts) The sample covariance between the (least-squares) prediction error ê = y−ŵ′φ(x)
and the k-th feature φk(x) is

σ̃(ê, φk) =
1
n

∑
i

(êi − ē)(φk(xi)− φ̄k) (1)

where êi = yi − ŵ′φ(xi); ē = 1
n

∑
i êi and φ̄k = 1

n

∑
i φk(xi). Minimizing

∑
i e

2
i w.r.t. w means

that the least-squares predictions satisfy
∑

i êiφk(xi) = 0 for all k. Setting φ1(x) = 1 implies∑
i êi = 0 so that ē = 0. Then,

σ̃(ê, φk) =
1
n

∑
i

êi(φk(xi)− φ̄k) (2)

=
1
n

{(∑
i

êiφk(xi)

)
−

(∑
i

êi

)
φ̄k

}
(3)

=
1
n

{
0− 0× φ̄k

}
(4)

= 0 (5)

Hence, the optimal linear least-squares predictor based upon features φ1(x) = 1, φ2(x), . . . , φd(x)
generates prediction errors which are uncorrelated with each of those features.

(1-2) (5pts) Let ψ(x) = w′φ(x). First, note that ψ is ”orthogonal” to the least-squares pre-
diction error ê = y − ŵ′φ(x) in the sense that

∑
i

êiψ(xi) =
n∑

i=1

êi

(
d∑

k=1

wkφk(xi)

)
(6)

=
∑

k

wk

(∑
i

êiφk(xi)

)
(7)

=
∑

k

wk × 0 (8)

= 0 (9)
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If φ1(x) = 1, then orthogonality implies ψ is uncorrelated with the prediction error as shown
below.

σ̃(ê, ψ) =
1
n

∑
i

êi(ψ(xi)− ψ̄) (10)

=
1
n

{(∑
i

êiψ(xi)

)
−

(∑
i

êi

)
ψ̄

}
(11)

=
1
n

{
0− 0× ψ̄

}
(12)

= 0 (13)

(1-3) (5pts) Given the original data {(xi, yi), i = 1, ..., n} and specified features φ(x), we
compute the least-squares parameters ŵ = (X ′X)−1X ′y and associated prediction errors êi =
yi − ŵ′φ(xi). Now, consider the new ”data” {(xi, ỹi = ei), i = 1, ..., n}. Let us determine the
best linear predictor for ỹ based upon φ(x). Let ỹ = (ỹ1 . . . ỹn)′. The least-squares prediction
for ỹ is w̃′φ(x) where

w̃ = (X ′X)−1X ′ỹ (14)
= (X ′X)−1X ′(y −Xŵ) (15)
= (ŵ − (X ′X)−1(X ′X)ŵ) (16)
= (ŵ − ŵ) (17)
= 0 (18)

Hence, the best linear prediction of ỹ based upon φ(x) is 0′φ(x) = 0 for all x.

(1-4) (5pts) Let φ̃(x) = Aφ(x) where A = diag(a1, . . . , an) is an invertible d×d matrix (ai 6= 0
for all i). The linear least-squares estimate of y based upon φ(x) is ŵ′φ(x) with ŵ = (X ′X)−1X ′y
where X = (φ(x1) . . . φ(xn))′ and y = (y1 . . . yn)′. Similarly, the linear least-squares estimate
of y based upon φ̃(x) is w̃′φ̃(x) with w̃ = (X̃ ′X̃)−1X̃ ′y where X̃ ′ = (φ̃(x1) . . . φ̃(xn)) = AX ′.
Then,

w̃′φ̃(x) = {(AX ′XA′)−1AX ′y}′Aφ(x) (19)
= {(A′)−1(X ′X)−1A−1Ay}′Aφ(x) (20)
= {(X ′X)−1(A−1A)y}′(A−1A)φ(x) (21)
= {(X ′X)−1y}′φ(x) (22)
= ŵ′φ(x) (23)

(1-5) (Optional) Your MATLAB script should perform the following calculations:

For φ(x) = (1 x x2)′;

X ′ = (φ(x1) . . . φ(x6)) =

 1 1 1 1 1
−2 −1 0 1 2

4 1 0 1 2

 (24)

K = X ′X =

 5 0 10
0 10 0

10 0 34

 (25)
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b = X ′y =

 −3
7

−5

 (26)

We then solve Kw = b for the least squares parameters:

w = K−1b ≈

 −0.74286
0.70000
0.07143

 (27)

The prediction errors are

e = y −Xŵ ≈


−0.14286

0.37143
−0.25714
−0.02857

0.05714

 (28)

In MATLAB it is easy to check that
∑

i ei = 0 and
∑

i eiφ(xi) = 0 (to within machine precision,
eps ≈ 10−16).

The MATLAB script hw1prob1.m will perform these calculations and generate a plot:

% calculate least-squares params
x = [-2 -1 0 1 2]’
y = [-2 -1 -1 0 1]’
X = [ones(size(x)),x,x.^2]
K = X’*X b = X’*y
wh = K \ b % solves K w = b

% check that prediction error uncorrelated with features
yh = X*wh % predictions
eh = y - yh % prediction errors
me = mean(eh)
z = zeros(3,1);
for i=1:3
z=z+eh(i)*X(i,:)’;

end disp(z)

% generate plot
xx = [-3:.01:3]’;
XX = [ones(size(xx)),xx,xx.^2];
yy = XX * wh;
plot(x,y,’o’,xx,yy,’-’);

For φ(x) = sinπx, the problem is ill-posed because for the given data φ(xi) = 0 for all xi so that
ŷi = w × 0 = 0 for all i (no matter how we choose w). There is no basis for performing linear
predictions of y values based on this feature function for the given data set. Note, however, that
MATLAB does not necessarily evaluate sinπ to be exactly zero but some small number. So, you
would most likely get a clear answer to this problem (other than what you would expect) if you
went ahead and solved it numerically in a straightforward manner. One needs to be a bit careful
to avoid such numerical issues when implementing machine learning methods in practice.
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Problem 2

(2-1) (10pts) Let W = (w1 w2) and Y = (y1 y2). The cost function may be decomposed into
two parts;

J(W ;Y ) =
1
n

∑
i

‖yi −W ′φ(xi)‖2 (29)

=
1
n

∑
i

(
(yi,1 −w′

1φ(xi))2 + (yi,2 −w′
2φ(xi))2

)
(30)

=

(
1
n

∑
i

(yi,1 −w′
1φ(xi))2

)
+

(
1
2

∑
i

(yi,2 −w′
2φ(xi))2

)
(31)

= J1(w1;y1) + J2(w2;y2) (32)

Hence, we choose ŵ1 s.t. ŵ′
1φ(x) is the linear least-squares estimate of y1 based upon φ(x).

Likewise, ŵ2 is chosen s.t. ŵ′
2φ(x) is the linear least-squares estimate of y2 based upon φ(x).

These least-squares parameters are given by:

ŵ1 = (X ′X)−1X ′y1 (33)
ŵ2 = (X ′X)−1X ′y2 (34)

Concatenating column vectors yields:

Ŵ = (ŵ1 ŵ2) (35)
= (X ′X)−1X ′(y1 y2) (36)
= (X ′X)−1X ′Y (37)

(2-2) (5pts)

X ′ =
(

1 1 1 0 0 0
0 0 0 1 1 1

)
(38)

X ′X =
(

3 0
0 3

)
(39)

Y =


−1 −1
−1 −2
−2 −1

1 1
1 2
2 1

 (40)

X ′Y =
(
−4 −4

4 4

)
(41)

Ŵ =
1
3
I(X ′Y ) =

(
− 4

3 − 4
3

4
3

4
3

)
(42)

The MATLAB script hw1prob2.m will perform these calculations and generate a plot.

x = [0 0 0 1 1 1]’
X = [~x x]

Y = [-1 -1; -1 -2; -2 -1; 1 1; 1 2; 2 1]
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Wh = inv(X’*X)*X’*Y
y1=Y(:,1)
y2=Y(:,2)
w1=Wh(:,1)
w2=Wh(:,2)
plot(y1,y2,’x’,w1,w2,’o’);

(2-3) (5pts)∑
i

êiφ(xi) =
{(

1
3
1
3

)
+
(

1
3

− 2
3

)
+
(
− 2

3
1
3

)}
(1 0) +

{(
1
3
1
3

)
+
(

1
3

− 2
3

)
+
(
− 2

3
1
3

)}
(0 1)

=
(

0
0

)
(1 0) +

(
0
0

)
(0 1) (43)

=
(

0 0
0 0

)
(44)

Note that ŷ0 = f(0; Ŵ ) = (− 4
3 −

4
3 )′ is the (conditional) sample average of y over those samples

where x = 0. Likewise, ŷ1 = f(1, Ŵ ) = ( 4
3

4
3 )′ is the sample average of y over those samples

where x = 1. Consequently,
∑

i êi = 0.

Part 2: Probabilistic Modelling and Likelihood

(No Problem 3)

Problem 4

The pmf of x ∈ {0, 1} is

P (x) =
{

1− θ1, x = 0
θ1, x = 1 (45)

The conditional pmf of y ∈ {0, 1} given that x = 0 is

P (y|x = 0) =
{
θ2, y = 0
1− θ2, y = 1 (46)

The conditional pmf of y given that x = 1 is

P (y|x = 1) =
{

1− θ2, y = 0
θ2, y = 1 (47)

(4-1) (5pts) Use P (x, y) = P (y|x)P (x) to tabulate the joint pmf of (x, y).

Px,y ≡
(
P (0, 0) P (0, 1)
P (1, 0) P (1, 1)

)
=
(
θ2(1− θ1) (1− θ2)(1− θ1)
(1− θ2)θ1 θ2θ1

)
(48)

(4-2) (10pts) We select (θ1, θ2) to minimize the log-likelihood of the samples {(xi, yi), i =
1, ..., n} which may be expressed as

J(θ1, θ2) =
∑

i

logP (xi, yi) (49)
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=
∑

i

(logP (yi|xi) + logP (xi)) (50)

=

(∑
i

logP (yi|xi)

)
+

(∑
i

logP (xi)

)
(51)

= J2(θ2) + J1(θ1) (52)

Hence, we choose θ1 to minimize

J1(θ1) =
∑

i

logP (xi) (53)

= N(x = 1) log θ1 + (n−N(x = 1)) log(1− θ1) (54)

where N(x = 1) =
∑

i xi. Differentiating w.r.t. θ1 gives

∂J1

∂θ1
=

N(x = 1)
θ1

− n−N(x = 1)
1− θ1

(55)

We set this derivative to zero and solve for θ1 to obtain

θ̂1 =
N(x = 1)

n
(56)

Similarly, we choose θ2 to minimize

J2(θ2) =
∑

i

logP (yi|xi) (57)

= N(x = y)θ2 + (n−N(x = y))(1− θ2) (58)
(59)

where N(x = y) =
∑

i(xiyi + (1− xi)(1− yi)). Differentiating J2 w.r.t. θ2, setting to zero and
solving for θ2 gives

θ̂2 =
N(x = y)

n
(60)

For the example data;

θ̂1 =
4
7

(61)

θ̂2 =
4
7

(62)

The maximum likelihood of the data under this model is∏
i

P̂ (yi|xi)P̂ (xi) =
(

4
7

)8(3
7

)6

≈ 7.0443× 10−5 (63)

(4-3) (10pts) The expected value of the estimate θ̂1 = 1
n

∑
i xi is

E{θ̂1(x1, . . . , x2)} = E

{
1
n

∑
i

xi

}
(64)

=
1
n

∑
i

E{xi} (65)

=
1
n

∑
i

θ1 (66)

= θ1 (67)

Hence, the ML estimate θ̂1 is unbiased.
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(4-4) (10pts) There are four possible outcomes (x, y) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}. Label these
outcomes z = 0, 1, 2, 3. A minimal parameterization of the joint pmf P (z) is given below:

P (0) = 1−
3∑

k=1

θk (68)

P (1) = θ1 (69)
P (2) = θ2 (70)
P (3) = θ3 (71)

Given the samples {(xi, yi), i = 1, . . . , n} the log-likelihood is

J(θ) =
∑

i

logP (xi, yi) (72)

= N0 log(1−
3∑

i=1

θi) +
3∑

j=1

Nj log θj (73)

where Nk is the number of times z = k occurs in the observed samples. Differentiating w.r.t. to
each θk gives

∂J

∂θk
= − N0

1−
∑3

i=1 θi

+
Nk

θk
(74)

Setting each derivative to zero, we obtain θk = Nk

λ where λ = N0/(1 −
∑3

i=1 θi); substitution
gives λ = N0/(1 − 1

λ (N1 + N2 + N3)); solve for λ = N0 + N1 + N2 + N3 = n. Hence, the ML
estimate of the pmf of z is P (z = k) = Nk

n . Equivalently, the ML estimate of joint pmf of (x, y)
is

P̂ (x, y) =
N(x, y)

n
(75)

where N(x, y) is the number of times (x, y) occurs in the observed samples.

For the example data;

P̂x,y ≡
(
P̂ (0, 0) P̂ (0, 1)
P̂ (1, 0) P̂ (1, 1)

)
=
(

2
7

1
7

2
7

2
7

)
(76)

The maximum likelihood of the data under this model is∏
i

P̂ (xi, yi) =
(

1
7

)1(2
7

)6

=
64

823543
≈ 7.7712× 10−5 (77)

which is higher than in the previous two-parameter model (as we would expect since the two-
parameter model is contained by the three-parameter model).

(4-5) (Optional) Let δ(u, v) be defined so that δ(u, v) = 1 if u = v and δ(u, v) = 0 otherwise.
Then, N(x, y) =

∑
i δ(x, xi)δ(y, yi) and

E{P̂ (x, y)} =
1
n

∑
i

E{δ(x, xi)δ(y, yi)} (78)

=
1
n

∑
i

P (x, y) (79)

= P (x, y) (80)
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(4-6) (Optional) Let θ̂\i denote the ML estimate of the model parameters based upon samples
{1, . . . , n} \ i (omitting sample i). This generates n estimates of the model parameters θ. For
the i-th estimate, compute the log-likelihood of sample i. Sum this leave-one-out log-likelihood
statistic over all samples.

J =
∑

i

logP (xi, yi; θ̂\i) (81)

Compute this cross-validation log-likelihood under both models and prefer the model which
produces the higher value.

For the two-parameter model we calculate

J = log
(

1
4
· 1
6
· 1
6
· 1
6
· 1
4
· 1
3
· 4
9

)
(82)

= log
1

23328
(83)

≈ −10.057 (84)

where we have taken log to be the natural logarithm.

For the three-parameter model, note that the last sample (x7, y7) = (0, 1) is the only occurrence
of (0, 1) in the data set. Hence, P̂ \7(0, 1) = 0 and J = log 0 = −∞. This suggests that the
three-parameter model has overfit the data and we should favor the two-parameter model.

Problem 5

(5-1) (10pts) We wish to maximize the log-likelihood of observed samples {xi, i = 1, . . . , n}.

L(µ,Σ) =
∑

i

log p(xi;µ,Σ) (85)

= −1
2
{n log |Σ|+

∑
i

(xi − µ)′Σ−1(xi − µ)}+ const (86)

Calculate the derivative of L w.r.t. the mean parameters µ and the inverse-covariance parameters
A = Σ−1:

dL

dµ
= −1

2

∑
i

d

dµ

{
(xi − µ)′Σ−1(xi − µ)

}
(87)

= −1
2

∑
i

2Σ−1(xi − µ) (88)

= nΣ−1

(
µ− 1

n

∑
i

xi

)
(89)

dL

dA
= −1

2

{
−nd log |A|

dA
+
∑

i

d

dA
(xi − µ)′A(xi − µ)

}
(90)

=
n

2

{
A−1 − 1

n

∑
i

(xi − µ)(xi − µ)′
}

(91)

Solving the system of equations

dL

du
= 0 (92)

dL

dA
= 0 (93)
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for (µ,Σ = A−1) gives the joint ML estimates:

µ̂ =
1
n

∑
i

xi (94)

Σ̂ =
1
n

∑
i

(xi − µ̂) (95)

(5-2) There are several possible ways of solving this problem. We will proceed here in a way
that explicates some useful properties of Gaussian distributions. Let

µ =
(
µ1

µ2

)
(96)

and

Σ =
(

σ2
1 σ1,2

σ1,2 σ2
2

)
(97)

Note that µi = E{xi}, σ2
i = var(xi) and σ1,2 = cov(x1, x2). The marginal distributions of a

bivariate Gaussian distribution are univariate Gaussian distributions (a well known fact which
you do not have to prove). Hence, x1 ∼ N(µ1, σ

2
1) and the pdf p(x1) is

p(x1) =
1√
2πσ2

1

exp

{
−1

2

(
x1 − µ1

σ1

)2
}

(98)

The conditional pdf’s of bivariate Gaussian are also (conditional) univariate Gaussian distribu-
tions. We explicitly show this thereby determining E{x2|x1 = x1}. First, note that the inverse
covariance is

Σ−1 =
1
|Σ|

(
σ2

2 −σ1,2

−σ1,2 σ2
1

)
(99)

=
1

1− ρ2

(
1

σ2
1

− ρ
σ1σ2

− ρ
σ1σ2

1
σ2
2

)
(100)

where |Σ| = σ2
1σ

2
2 − σ2

1,2 = σ2
1σ

2
2(1− ρ2) and ρ = σ1,2

σ1σ2
. Write out the joint pdf in (x1, x2).

p(x1, x2) =
1

2π
√
|Σ|

exp

{
− 1

2(1− ρ2)

((
x1 − µ1

σ1

)2

+
(
x2 − µ2

σ2

)2

− 2ρ
(
x1 − µ1

σ1

)(
x2 − µ2

σ2

))}
(101)

The conditional pdf of x2 given x1 (up to the normalization constant) is

p(x2|x1) =
p(x1, x2)
p(x1)

∝ exp

{
− 1

2(1− ρ2)

((
x1 − µ1

σ1

)2

+
(
x2 − µ2

σ2

)2

− 2ρ
(
x1 − µ1

σ1

)(
x2 − µ2

σ2

))
+

1
2

(
x1 − µ1

σ1

)2
}

∝ exp

{
− 1

2(1− ρ2)

((
x2 − µ2

σ2

)2

+ ρ2

(
x1 − µ1

σ1

)2

− 2ρ
(
x1 − µ1

σ1

)(
x2 − µ2

σ2

))}

∝ exp

{
− 1

2(1− ρ2)

((
x2 − µ2

σ2

)
− ρ

(
x1 − µ1

σ1

))2
}

9



∝ exp

−1
2

x2 −
(
µ2 + σ2ρ

(
x1−µ1

σ1

))
σ2

√
1− ρ2

2


∝ exp

{
−1

2

(
x2 − µ2|1(x1)

σ2|1

)2
}

(102)

where

µ2|1(x1) = µ2 +
σ2ρ

σ1
(x1 − µ1) (103)

σ2
2|1 = σ2

2(1− ρ2) (104)

This shows that the conditional distribution of x2 given x1 is the univariate Gaussian distribu-
tion N(µ2|1(x1), σ2

2|1) with (conditional) mean E{x2|x1} = µ2|1(x1) and (conditional) variance
var(x2|x1) = σ2

2|1.

Hence, the minimum mean-square error (MMSE) estimate of x2 given x1 is

x̂2(x1) = µ2 +
σ2ρ

σ1
(x1 − µ1) (105)

= µ2 +
σ1,2

σ2
1

(x1 − µ1) (106)

which is what we were asked to derive. Note that this estimate happens to be linear in x1

(although we did not require this) and hence agrees with the formula for the linear least-squares
estimate of x2 based upon x1 (derived in recitation). In general, for jointly Gaussian random
variables, linear least-squares estimation is equivalent to minimum mean-square estimation.
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