6.867 Machine Learning

Solutions for Problem Set 1

Monday, September 22

Part 1: Least-Squares Regression

Problem 1

(1-1) (5pts) The sample covariance between the (least-squares) prediction error $\hat{e}=y-\hat{w}^{\prime} \phi(x)$ and the k-th feature $\phi_{k}(x)$ is

$$
\begin{equation*}
\tilde{\sigma}\left(\hat{e}, \phi_{k}\right)=\frac{1}{n} \sum_{i}\left(\hat{e}_{i}-\bar{e}\right)\left(\phi_{k}\left(x_{i}\right)-\bar{\phi}_{k}\right) \tag{1}
\end{equation*}
$$

where $\hat{e}_{i}=y_{i}-\hat{w}^{\prime} \phi\left(x_{i}\right) ; \bar{e}=\frac{1}{n} \sum_{i} \hat{e}_{i}$ and $\bar{\phi}_{k}=\frac{1}{n} \sum_{i} \phi_{k}\left(x_{i}\right)$. Minimizing $\sum_{i} e_{i}^{2}$ w.r.t. w means that the least-squares predictions satisfy $\sum_{i} \hat{e}_{i} \phi_{k}\left(x_{i}\right)=0$ for all k. Setting $\phi_{1}(x)=1$ implies $\sum_{i} \hat{e}_{i}=0$ so that $\bar{e}=0$. Then,

$$
\begin{align*}
\tilde{\sigma}\left(\hat{e}, \phi_{k}\right) & =\frac{1}{n} \sum_{i} \hat{e}_{i}\left(\phi_{k}\left(x_{i}\right)-\bar{\phi}_{k}\right) \tag{2}\\
& =\frac{1}{n}\left\{\left(\sum_{i} \hat{e}_{i} \phi_{k}\left(x_{i}\right)\right)-\left(\sum_{i} \hat{e}_{i}\right) \bar{\phi}_{k}\right\} \tag{3}\\
& =\frac{1}{n}\left\{0-0 \times \bar{\phi}_{k}\right\} \tag{4}\\
& =0 \tag{5}
\end{align*}
$$

Hence, the optimal linear least-squares predictor based upon features $\phi_{1}(x)=1, \phi_{2}(x), \ldots, \phi_{d}(x)$ generates prediction errors which are uncorrelated with each of those features.
(1-2) (5pts) Let $\psi(x)=w^{\prime} \phi(x)$. First, note that ψ is "orthogonal" to the least-squares prediction error $\hat{e}=y-\hat{w}^{\prime} \phi(x)$ in the sense that

$$
\begin{align*}
\sum_{i} \hat{e}_{i} \psi\left(x_{i}\right) & =\sum_{i=1}^{n} \hat{e}_{i}\left(\sum_{k=1}^{d} w_{k} \phi_{k}\left(x_{i}\right)\right) \tag{6}\\
& =\sum_{k} w_{k}\left(\sum_{i} \hat{e}_{i} \phi_{k}\left(x_{i}\right)\right) \tag{7}\\
& =\sum_{k} w_{k} \times 0 \tag{8}\\
& =0 \tag{9}
\end{align*}
$$

If $\phi_{1}(x)=1$, then orthogonality implies ψ is uncorrelated with the prediction error as shown below.

$$
\begin{align*}
\tilde{\sigma}(\hat{e}, \psi) & =\frac{1}{n} \sum_{i} \hat{e}_{i}\left(\psi\left(x_{i}\right)-\bar{\psi}\right) \tag{10}\\
& =\frac{1}{n}\left\{\left(\sum_{i} \hat{e}_{i} \psi\left(x_{i}\right)\right)-\left(\sum_{i} \hat{e}_{i}\right) \bar{\psi}\right\} \tag{11}\\
& =\frac{1}{n}\{0-0 \times \bar{\psi}\} \tag{12}\\
& =0 \tag{13}
\end{align*}
$$

(1-3) (5pts) Given the original data $\left\{\left(x_{i}, y_{i}\right), i=1, \ldots, n\right\}$ and specified features $\phi(x)$, we compute the least-squares parameters $\hat{\mathbf{w}}=\left(X^{\prime} X\right)^{-1} X^{\prime} \mathbf{y}$ and associated prediction errors $\hat{e}_{i}=$ $y_{i}-\hat{\mathbf{w}}^{\prime} \phi\left(x_{i}\right)$. Now, consider the new "data" $\left\{\left(x_{i}, \tilde{y}_{i}=e_{i}\right), i=1, \ldots, n\right\}$. Let us determine the best linear predictor for \tilde{y} based upon $\phi(x)$. Let $\tilde{\mathbf{y}}=\left(\tilde{y}_{1} \ldots \tilde{y}_{n}\right)^{\prime}$. The least-squares prediction for \tilde{y} is $\tilde{\mathbf{w}}^{\prime} \phi(x)$ where

$$
\begin{align*}
\tilde{\mathbf{w}} & =\left(X^{\prime} X\right)^{-1} X^{\prime} \tilde{\mathbf{y}} \tag{14}\\
& =\left(X^{\prime} X\right)^{-1} X^{\prime}(\mathbf{y}-X \hat{\mathbf{w}}) \tag{15}\\
& =\left(\hat{\mathbf{w}}-\left(X^{\prime} X\right)^{-1}\left(X^{\prime} X\right) \hat{\mathbf{w}}\right) \tag{16}\\
& =(\hat{\mathbf{w}}-\hat{\mathbf{w}}) \tag{17}\\
& =\mathbf{0} \tag{18}
\end{align*}
$$

Hence, the best linear prediction of \tilde{y} based upon $\phi(x)$ is $\mathbf{0}^{\prime} \phi(x)=0$ for all x.
(1-4) (5pts) Let $\tilde{\phi}(x)=A \phi(x)$ where $A=\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)$ is an invertible $d \times d$ matrix $\left(a_{i} \neq 0\right.$ for all i). The linear least-squares estimate of y based upon $\phi(x)$ is $\hat{\mathbf{w}}^{\prime} \phi(x)$ with $\hat{\mathbf{w}}=\left(X^{\prime} X\right)^{-1} X^{\prime} \mathbf{y}$ where $X=\left(\phi\left(x_{1}\right) \ldots \phi\left(x_{n}\right)\right)_{\sim}^{\prime}$ and $\mathbf{y}=\left(y_{1} \ldots y_{n}\right)^{\prime}$. Similarly, the linear least-squares estimate of y based upon $\tilde{\phi}(x)$ is $\tilde{\mathbf{w}}^{\prime} \tilde{\phi}(x)$ with $\tilde{\mathbf{w}}=\left(\tilde{X}^{\prime} \tilde{X}\right)^{-1} \tilde{X}^{\prime} \mathbf{y}$ where $\tilde{X}^{\prime}=\left(\tilde{\phi}\left(x_{1}\right) \ldots \tilde{\phi}\left(x_{n}\right)\right)=A X^{\prime}$. Then,

$$
\begin{align*}
\tilde{\mathbf{w}}^{\prime} \tilde{\phi}(x) & =\left\{\left(A X^{\prime} X A^{\prime}\right)^{-1} A X^{\prime} \mathbf{y}\right\}^{\prime} A \phi(x) \tag{19}\\
& =\left\{\left(A^{\prime}\right)^{-1}\left(X^{\prime} X\right)^{-1} A^{-1} A \mathbf{y}\right\}^{\prime} A \phi(x) \tag{20}\\
& =\left\{\left(X^{\prime} X\right)^{-1}\left(A^{-1} A\right) \mathbf{y}\right\}^{\prime}\left(A^{-1} A\right) \phi(x) \tag{21}\\
& =\left\{\left(X^{\prime} X\right)^{-1} \mathbf{y}\right\}^{\prime} \phi(x) \tag{22}\\
& =\hat{\mathbf{w}}^{\prime} \phi(x) \tag{23}
\end{align*}
$$

(1-5) (Optional) Your MATLAB script should perform the following calculations: For $\phi(x)=\left(1 x x^{2}\right)^{\prime}$;

$$
\begin{gather*}
X^{\prime}=\left(\phi\left(x_{1}\right) \ldots \phi\left(x_{6}\right)\right)=\left(\begin{array}{rrrrr}
1 & 1 & 1 & 1 & 1 \\
-2 & -1 & 0 & 1 & 2 \\
4 & 1 & 0 & 1 & 2
\end{array}\right) \tag{24}\\
K=X^{\prime} X=\left(\begin{array}{rrr}
5 & 0 & 10 \\
0 & 10 & 0 \\
10 & 0 & 34
\end{array}\right) \tag{25}
\end{gather*}
$$

$$
b=X^{\prime} y=\left(\begin{array}{r}
-3 \tag{26}\\
7 \\
-5
\end{array}\right)
$$

We then solve $K w=b$ for the least squares parameters:

$$
w=K^{-1} b \approx\left(\begin{array}{r}
-0.74286 \tag{27}\\
0.70000 \\
0.07143
\end{array}\right)
$$

The prediction errors are

$$
\mathbf{e}=\mathbf{y}-X \hat{\mathbf{w}} \approx\left(\begin{array}{r}
-0.14286 \tag{28}\\
0.37143 \\
-0.25714 \\
-0.02857 \\
0.05714
\end{array}\right)
$$

In MATLAB it is easy to check that $\sum_{i} e_{i}=0$ and $\sum_{i} e_{i} \phi\left(x_{i}\right)=0$ (to within machine precision, $\mathrm{eps} \approx 10^{-16}$).
The MATLAB script hw1prob1.m will perform these calculations and generate a plot:

```
% calculate least-squares params
x = [-2 -1 0 1 2]'
y = [-2 -1 -1 0 1],
X = [ones(size(x)),x,x.`2]
K = X'*X b = X'*y
wh = K \ b % solves K w = b
% check that prediction error uncorrelated with features
yh = X*wh % predictions
eh = y - yh % prediction errors
me = mean(eh)
z = zeros(3,1);
for i=1:3
    z=z+eh(i)*X(i,:)';
end disp(z)
% generate plot
xx = [-3:.01:3]';
XX = [ones(size(xx)),xx,xx. ^2];
yy = XX * wh;
plot(x,y,'o',xx,yy,'-');
```

For $\phi(x)=\sin \pi x$, the problem is ill-posed because for the given data $\phi\left(x_{i}\right)=0$ for all x_{i} so that $\hat{y}_{i}=w \times 0=0$ for all i (no matter how we choose w). There is no basis for performing linear predictions of y values based on this feature function for the given data set. Note, however, that MATLAB does not necessarily evaluate $\sin \pi$ to be exactly zero but some small number. So, you would most likely get a clear answer to this problem (other than what you would expect) if you went ahead and solved it numerically in a straightforward manner. One needs to be a bit careful to avoid such numerical issues when implementing machine learning methods in practice.

Problem 2

(2-1) (10pts) Let $W=\left(\mathbf{w}_{1} \mathbf{w}_{2}\right)$ and $Y=\left(\mathbf{y}^{1} \mathbf{y}^{2}\right)$. The cost function may be decomposed into two parts;

$$
\begin{align*}
J(W ; Y) & =\frac{1}{n} \sum_{i}\left\|\mathbf{y}_{i}-W^{\prime} \phi\left(x_{i}\right)\right\|^{2} \tag{29}\\
& =\frac{1}{n} \sum_{i}\left(\left(y_{i, 1}-\mathbf{w}_{1}^{\prime} \phi\left(x_{i}\right)\right)^{2}+\left(y_{i, 2}-\mathbf{w}_{2}^{\prime} \phi\left(x_{i}\right)\right)^{2}\right) \tag{30}\\
& =\left(\frac{1}{n} \sum_{i}\left(y_{i, 1}-\mathbf{w}_{1}^{\prime} \phi\left(x_{i}\right)\right)^{2}\right)+\left(\frac{1}{2} \sum_{i}\left(y_{i, 2}-\mathbf{w}_{2}^{\prime} \phi\left(x_{i}\right)\right)^{2}\right) \tag{31}\\
& =J_{1}\left(\mathbf{w}_{1} ; \mathbf{y}^{1}\right)+J_{2}\left(\mathbf{w}_{2} ; \mathbf{y}^{2}\right) \tag{32}
\end{align*}
$$

Hence, we choose $\hat{\mathbf{w}}_{1}$ s.t. $\hat{\mathbf{w}}_{1}^{\prime} \phi(x)$ is the linear least-squares estimate of y_{1} based upon $\phi(x)$. Likewise, $\hat{\mathbf{w}}_{2}$ is chosen s.t. $\hat{\mathbf{w}}_{2}^{\prime} \phi(x)$ is the linear least-squares estimate of y_{2} based upon $\phi(x)$. These least-squares parameters are given by:

$$
\begin{align*}
& \hat{\mathbf{w}}_{1}=\left(X^{\prime} X\right)^{-1} X^{\prime} \mathbf{y}^{1} \tag{33}\\
& \hat{\mathbf{w}}_{2}=\left(X^{\prime} X\right)^{-1} X^{\prime} \mathbf{y}^{2} \tag{34}
\end{align*}
$$

Concatenating column vectors yields:

$$
\begin{align*}
\hat{W} & =\left(\hat{\mathbf{w}}_{1} \hat{\mathbf{w}}_{\mathbf{2}}\right) \tag{35}\\
& =\left(X^{\prime} X\right)^{-1} X^{\prime}\left(\mathbf{y}^{1} \mathbf{y}^{2}\right) \tag{36}\\
& =\left(X^{\prime} X\right)^{-1} X^{\prime} Y \tag{37}
\end{align*}
$$

(2-2) (5pts)

$$
\begin{align*}
& X^{\prime}=\left(\begin{array}{llllll}
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1
\end{array}\right) \tag{38}\\
& X^{\prime} X=\left(\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right) \tag{39}\\
& Y=\left(\begin{array}{rr}
-1 & -1 \\
-1 & -2 \\
-2 & -1 \\
1 & 1 \\
1 & 2 \\
2 & 1
\end{array}\right) \tag{40}\\
& X^{\prime} Y=\left(\begin{array}{rr}
-4 & -4 \\
4 & 4
\end{array}\right) \tag{41}\\
& \hat{W}=\frac{1}{3} I\left(X^{\prime} Y\right)=\left(\begin{array}{rr}
-\frac{4}{3} & -\frac{4}{3} \\
\frac{4}{3} & \frac{4}{3}
\end{array}\right) \tag{42}
\end{align*}
$$

The MATLAB script hw1prob2.m will perform these calculations and generate a plot.

```
x = [0}00000ccllll,'
X = [ ~ x x]
Y = [-1 -1; -1 -2; -2 -1; 1 1; 1 2; 2 1]
```

```
Wh = inv(X'*X)*X'*Y
y1=Y(:,1)
y2=Y(:,2)
w1=Wh(:,1)
w2=Wh(:,2)
plot(y1,y2,'x',w1,w2,'o');
```

(2-3) (5pts)

$$
\begin{align*}
\sum_{i} \hat{\mathbf{e}}_{i} \phi\left(x_{i}\right) & =\left\{\binom{\frac{1}{3}}{\frac{1}{3}}+\binom{\frac{1}{3}}{-\frac{2}{3}}+\binom{-\frac{2}{3}}{\frac{1}{3}}\right\}\left(\begin{array}{ll}
1 & 0
\end{array}\right)+\left\{\binom{\frac{1}{3}}{\frac{1}{3}}+\binom{\frac{1}{3}}{-\frac{2}{3}}+\binom{-\frac{2}{3}}{\frac{1}{3}}\right\}(01) \\
& =\binom{0}{0}(10)+\binom{0}{0}\left(\begin{array}{ll}
0 & 1
\end{array}\right) \tag{43}\\
& =\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \tag{44}
\end{align*}
$$

Note that $\hat{\mathbf{y}}_{0}=\mathbf{f}(0 ; \hat{W})=\left(-\frac{4}{3}-\frac{4}{3}\right)^{\prime}$ is the (conditional) sample average of \mathbf{y} over those samples where $x=0$. Likewise, $\hat{\mathbf{y}}_{1}=\mathbf{f}(1, \hat{W})=\left(\frac{4}{3} \frac{4}{3}\right)^{\prime}$ is the sample average of \mathbf{y} over those samples where $x=1$. Consequently, $\sum_{i} \hat{\mathbf{e}}_{i}=0$.

Part 2: Probabilistic Modelling and Likelihood

(No Problem 3)

Problem 4

The pmf of $x \in\{0,1\}$ is

$$
P(x)= \begin{cases}1-\theta_{1}, & x=0 \tag{45}\\ \theta_{1}, & x=1\end{cases}
$$

The conditional pmf of $y \in\{0,1\}$ given that $x=0$ is

$$
P(y \mid x=0)= \begin{cases}\theta_{2}, & y=0 \tag{46}\\ 1-\theta_{2}, & y=1\end{cases}
$$

The conditional pmf of y given that $x=1$ is

$$
P(y \mid x=1)= \begin{cases}1-\theta_{2}, & y=0 \tag{47}\\ \theta_{2}, & y=1\end{cases}
$$

(4-1) (5pts) Use $P(x, y)=P(y \mid x) P(x)$ to tabulate the joint pmf of (x, y).

$$
P_{\mathrm{x}, \mathrm{y}} \equiv\left(\begin{array}{cc}
P(0,0) & P(0,1) \tag{48}\\
P(1,0) & P(1,1)
\end{array}\right)=\left(\begin{array}{cc}
\theta_{2}\left(1-\theta_{1}\right) & \left(1-\theta_{2}\right)\left(1-\theta_{1}\right) \\
\left(1-\theta_{2}\right) \theta_{1} & \theta_{2} \theta_{1}
\end{array}\right)
$$

(4-2) (10pts) We select $\left(\theta_{1}, \theta_{2}\right)$ to minimize the log-likelihood of the samples $\left\{\left(x_{i}, y_{i}\right), i=\right.$ $1, \ldots, n\}$ which may be expressed as

$$
\begin{equation*}
J\left(\theta_{1}, \theta_{2}\right)=\sum_{i} \log P\left(x_{i}, y_{i}\right) \tag{49}
\end{equation*}
$$

$$
\begin{align*}
& =\sum_{i}\left(\log P\left(y_{i} \mid x_{i}\right)+\log P\left(x_{i}\right)\right) \tag{50}\\
& =\left(\sum_{i} \log P\left(y_{i} \mid x_{i}\right)\right)+\left(\sum_{i} \log P\left(x_{i}\right)\right) \tag{51}\\
& =J_{2}\left(\theta_{2}\right)+J_{1}\left(\theta_{1}\right) \tag{52}
\end{align*}
$$

Hence, we choose θ_{1} to minimize

$$
\begin{align*}
J_{1}\left(\theta_{1}\right) & =\sum_{i} \log P\left(x_{i}\right) \tag{53}\\
& =N(x=1) \log \theta_{1}+(n-N(x=1)) \log \left(1-\theta_{1}\right) \tag{54}
\end{align*}
$$

where $N(x=1)=\sum_{i} x_{i}$. Differentiating w.r.t. θ_{1} gives

$$
\begin{equation*}
\frac{\partial J_{1}}{\partial \theta_{1}}=\frac{N(x=1)}{\theta_{1}}-\frac{n-N(x=1)}{1-\theta_{1}} \tag{55}
\end{equation*}
$$

We set this derivative to zero and solve for θ_{1} to obtain

$$
\begin{equation*}
\hat{\theta}_{1}=\frac{N(x=1)}{n} \tag{56}
\end{equation*}
$$

Similarly, we choose θ_{2} to minimize

$$
\begin{align*}
J_{2}\left(\theta_{2}\right) & =\sum_{i} \log P\left(y_{i} \mid x_{i}\right) \tag{57}\\
& =N(x=y) \theta_{2}+(n-N(x=y))\left(1-\theta_{2}\right) \tag{58}
\end{align*}
$$

where $N(x=y)=\sum_{i}\left(x_{i} y_{i}+\left(1-x_{i}\right)\left(1-y_{i}\right)\right)$. Differentiating J_{2} w.r.t. θ_{2}, setting to zero and solving for θ_{2} gives

$$
\begin{equation*}
\hat{\theta}_{2}=\frac{N(x=y)}{n} \tag{60}
\end{equation*}
$$

For the example data;

$$
\begin{align*}
& \hat{\theta}_{1}=\frac{4}{7} \tag{61}\\
& \hat{\theta}_{2}=\frac{4}{7} \tag{62}
\end{align*}
$$

The maximum likelihood of the data under this model is

$$
\begin{equation*}
\prod_{i} \hat{P}\left(y_{i} \mid x_{i}\right) \hat{P}\left(x_{i}\right)=\left(\frac{4}{7}\right)^{8}\left(\frac{3}{7}\right)^{6} \approx 7.0443 \times 10^{-5} \tag{63}
\end{equation*}
$$

(4-3) (10pts) The expected value of the estimate $\hat{\theta}_{1}=\frac{1}{n} \sum_{i} \mathrm{x}_{i}$ is

$$
\begin{align*}
E\left\{\hat{\theta}_{1}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{2}\right)\right\} & =E\left\{\frac{1}{n} \sum_{i} \mathrm{x}_{i}\right\} \tag{64}\\
& =\frac{1}{n} \sum_{i} E\left\{\mathrm{x}_{i}\right\} \tag{65}\\
& =\frac{1}{n} \sum_{i} \theta_{1} \tag{66}\\
& =\theta_{1} \tag{67}
\end{align*}
$$

Hence, the ML estimate $\hat{\theta}_{1}$ is unbiased.
(4-4) (10pts) There are four possible outcomes $(x, y) \in\{(0,0),(0,1),(1,0),(1,1)\}$. Label these outcomes $z=0,1,2,3$. A minimal parameterization of the joint $\operatorname{pmf} P(z)$ is given below:

$$
\begin{align*}
P(0) & =1-\sum_{k=1}^{3} \theta_{k} \tag{68}\\
P(1) & =\theta_{1} \tag{69}\\
P(2) & =\theta_{2} \tag{70}\\
P(3) & =\theta_{3} \tag{71}
\end{align*}
$$

Given the samples $\left\{\left(x_{i}, y_{i}\right), i=1, \ldots, n\right\}$ the log-likelihood is

$$
\begin{align*}
J(\theta) & =\sum_{i} \log P\left(x_{i}, y_{i}\right) \tag{72}\\
& =N_{0} \log \left(1-\sum_{i=1}^{3} \theta_{i}\right)+\sum_{j=1}^{3} N_{j} \log \theta_{j} \tag{73}
\end{align*}
$$

where N_{k} is the number of times $z=k$ occurs in the observed samples. Differentiating w.r.t. to each θ_{k} gives

$$
\begin{equation*}
\frac{\partial J}{\partial \theta_{k}}=-\frac{N_{0}}{1-\sum_{i=1}^{3} \theta_{i}}+\frac{N_{k}}{\theta_{k}} \tag{74}
\end{equation*}
$$

Setting each derivative to zero, we obtain $\theta_{k}=\frac{N_{k}}{\lambda}$ where $\lambda=N_{0} /\left(1-\sum_{i=1}^{3} \theta_{i}\right)$; substitution gives $\lambda=N_{0} /\left(1-\frac{1}{\lambda}\left(N_{1}+N_{2}+N_{3}\right)\right)$; solve for $\lambda=N_{0}+N_{1}+N_{2}+N_{3}=n$. Hence, the ML estimate of the pmf of z is $P(\mathrm{z}=k)=\frac{N_{k}}{n}$. Equivalently, the ML estimate of joint pmf of (x, y) is

$$
\begin{equation*}
\hat{P}(x, y)=\frac{N(x, y)}{n} \tag{75}
\end{equation*}
$$

where $N(x, y)$ is the number of times (x, y) occurs in the observed samples.
For the example data;

$$
\hat{P}_{\mathrm{x}, \mathrm{y}} \equiv\left(\begin{array}{cc}
\hat{P}(0,0) & \hat{P}(0,1) \tag{76}\\
\hat{P}(1,0) & \hat{P}(1,1)
\end{array}\right)=\left(\begin{array}{cc}
\frac{2}{7} & \frac{1}{7} \\
\frac{2}{7} & \frac{2}{7}
\end{array}\right)
$$

The maximum likelihood of the data under this model is

$$
\begin{equation*}
\prod_{i} \hat{P}\left(x_{i}, y_{i}\right)=\left(\frac{1}{7}\right)^{1}\left(\frac{2}{7}\right)^{6}=\frac{64}{823543} \approx 7.7712 \times 10^{-5} \tag{77}
\end{equation*}
$$

which is higher than in the previous two-parameter model (as we would expect since the twoparameter model is contained by the three-parameter model).
(4-5) (Optional) Let $\delta(u, v)$ be defined so that $\delta(u, v)=1$ if $u=v$ and $\delta(u, v)=0$ otherwise. Then, $N(x, y)=\sum_{i} \delta\left(x, x_{i}\right) \delta\left(y, y_{i}\right)$ and

$$
\begin{align*}
E\{\hat{P}(x, y)\} & =\frac{1}{n} \sum_{i} E\left\{\delta\left(x, \mathrm{x}_{i}\right) \delta\left(y, \mathrm{y}_{i}\right)\right\} \tag{78}\\
& =\frac{1}{n} \sum_{i} P(x, y) \tag{79}\\
& =P(x, y) \tag{80}
\end{align*}
$$

(4-6) (Optional) Let $\hat{\theta} \backslash i$ denote the ML estimate of the model parameters based upon samples $\{1, \ldots, n\} \backslash i$ (omitting sample i). This generates n estimates of the model parameters θ. For the i-th estimate, compute the log-likelihood of sample i. Sum this leave-one-out log-likelihood statistic over all samples.

$$
\begin{equation*}
J=\sum_{i} \log P\left(x_{i}, y_{i} ; \hat{\theta}^{\backslash i}\right) \tag{81}
\end{equation*}
$$

Compute this cross-validation log-likelihood under both models and prefer the model which produces the higher value.
For the two-parameter model we calculate

$$
\begin{align*}
J & =\log \left(\frac{1}{4} \cdot \frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{4} \cdot \frac{1}{3} \cdot \frac{4}{9}\right) \tag{82}\\
& =\log \frac{1}{23328} \tag{83}\\
& \approx-10.057 \tag{84}
\end{align*}
$$

where we have taken log to be the natural logarithm.
For the three-parameter model, note that the last sample $\left(x_{7}, y_{7}\right)=(0,1)$ is the only occurrence of $(0,1)$ in the data set. Hence, $\hat{P}^{\backslash 7}(0,1)=0$ and $J=\log 0=-\infty$. This suggests that the three-parameter model has overfit the data and we should favor the two-parameter model.

Problem 5

(5-1) (10pts) We wish to maximize the log-likelihood of observed samples $\left\{\mathbf{x}_{i}, i=1, \ldots, n\right\}$.

$$
\begin{align*}
L(\mu, \Sigma) & =\sum_{i} \log p\left(\mathbf{x}_{i} ; \mu, \Sigma\right) \tag{85}\\
& =-\frac{1}{2}\left\{n \log |\Sigma|+\sum_{i}\left(\mathbf{x}_{i}-\mu\right)^{\prime} \Sigma^{-1}\left(\mathbf{x}_{i}-\mu\right)\right\}+\mathrm{const} \tag{86}
\end{align*}
$$

Calculate the derivative of L w.r.t. the mean parameters μ and the inverse-covariance parameters $A=\Sigma^{-1}$.

$$
\begin{align*}
\frac{d L}{d \mu} & =-\frac{1}{2} \sum_{i} \frac{d}{d \mu}\left\{\left(\mathbf{x}_{i}-\mu\right)^{\prime} \Sigma^{-1}\left(\mathbf{x}_{i}-\mu\right)\right\} \tag{87}\\
& =-\frac{1}{2} \sum_{i} 2 \Sigma^{-1}\left(\mathbf{x}_{i}-\mu\right) \tag{88}\\
& =n \Sigma^{-1}\left(\mu-\frac{1}{n} \sum_{i} \mathbf{x}_{i}\right) \tag{89}\\
\frac{d L}{d A} & =-\frac{1}{2}\left\{-n \frac{d \log |A|}{d A}+\sum_{i} \frac{d}{d A}\left(\mathbf{x}_{i}-\mu\right)^{\prime} A\left(\mathbf{x}_{i}-\mu\right)\right\} \tag{90}\\
& =\frac{n}{2}\left\{A^{-1}-\frac{1}{n} \sum_{i}\left(\mathbf{x}_{i}-\mu\right)\left(\mathbf{x}_{i}-\mu\right)^{\prime}\right\} \tag{91}
\end{align*}
$$

Solving the system of equations

$$
\begin{align*}
& \frac{d L}{d u}=0 \tag{92}\\
& \frac{d L}{d A}=0 \tag{93}
\end{align*}
$$

for $\left(\mu, \Sigma=A^{-1}\right)$ gives the joint ML estimates:

$$
\begin{align*}
\hat{\mu} & =\frac{1}{n} \sum_{i} \mathbf{x}_{i} \tag{94}\\
\hat{\Sigma} & =\frac{1}{n} \sum_{i}\left(\mathbf{x}_{i}-\hat{\mu}\right) \tag{95}
\end{align*}
$$

(5-2) There are several possible ways of solving this problem. We will proceed here in a way that explicates some useful properties of Gaussian distributions. Let

$$
\begin{equation*}
\mu=\binom{\mu_{1}}{\mu_{2}} \tag{96}
\end{equation*}
$$

and

$$
\Sigma=\left(\begin{array}{rr}
\sigma_{1}^{2} & \sigma_{1,2} \tag{97}\\
\sigma_{1,2} & \sigma_{2}^{2}
\end{array}\right)
$$

Note that $\mu_{i}=E\left\{\mathrm{x}_{i}\right\}, \sigma_{i}^{2}=\operatorname{var}\left(\mathrm{x}_{\mathrm{i}}\right)$ and $\sigma_{1,2}=\operatorname{cov}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$. The marginal distributions of a bivariate Gaussian distribution are univariate Gaussian distributions (a well known fact which you do not have to prove). Hence, $\mathrm{x}_{1} \sim N\left(\mu_{1}, \sigma_{1}^{2}\right)$ and the pdf $p\left(x_{1}\right)$ is

$$
\begin{equation*}
p\left(x_{1}\right)=\frac{1}{\sqrt{2 \pi \sigma_{1}^{2}}} \exp \left\{-\frac{1}{2}\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)^{2}\right\} \tag{98}
\end{equation*}
$$

The conditional pdf's of bivariate Gaussian are also (conditional) univariate Gaussian distributions. We explicitly show this thereby determining $E\left\{\mathrm{x}_{2} \mid \mathrm{x}_{1}=x_{1}\right\}$. First, note that the inverse covariance is

$$
\begin{align*}
\Sigma^{-1} & =\frac{1}{|\Sigma|}\left(\begin{array}{rr}
\sigma_{2}^{2} & -\sigma_{1,2} \\
-\sigma_{1,2} & \sigma_{1}^{2}
\end{array}\right) \tag{99}\\
& =\frac{1}{1-\rho^{2}}\left(\begin{array}{rc}
\frac{1}{\sigma_{1}^{2}} & -\frac{\rho}{\sigma_{1} \sigma_{2}} \\
-\frac{\rho}{\sigma_{1} \sigma_{2}} & \frac{1}{\sigma_{2}^{2}}
\end{array}\right) \tag{100}
\end{align*}
$$

where $|\Sigma|=\sigma_{1}^{2} \sigma_{2}^{2}-\sigma_{1,2}^{2}=\sigma_{1}^{2} \sigma_{2}^{2}\left(1-\rho^{2}\right)$ and $\rho=\frac{\sigma_{1,2}}{\sigma_{1} \sigma_{2}}$. Write out the joint pdf in $\left(x_{1}, x_{2}\right)$.
$p\left(x_{1}, x_{2}\right)=\frac{1}{2 \pi \sqrt{|\Sigma|}} \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left(\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)^{2}+\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)^{2}-2 \rho\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)\right)\right\}$
The conditional pdf of x_{2} given x_{1} (up to the normalization constant) is

$$
\begin{aligned}
p\left(x_{2} \mid x_{1}\right) & =\frac{p\left(x_{1}, x_{2}\right)}{p\left(x_{1}\right)} \\
& \propto \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left(\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)^{2}+\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)^{2}-2 \rho\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)\right)+\frac{1}{2}\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)^{2}\right\} \\
& \propto \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left(\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)^{2}+\rho^{2}\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)^{2}-2 \rho\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)\right)\right\} \\
& \propto \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left(\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)-\rho\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)\right)^{2}\right\}
\end{aligned}
$$

$$
\begin{align*}
& \propto \quad \exp \left\{-\frac{1}{2}\left(\frac{x_{2}-\left(\mu_{2}+\sigma_{2} \rho\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)\right)}{\sigma_{2} \sqrt{1-\rho^{2}}}\right)^{2}\right\} \\
& \propto \quad \exp \left\{-\frac{1}{2}\left(\frac{x_{2}-\mu_{2 \mid 1}\left(x_{1}\right)}{\sigma_{2 \mid 1}}\right)^{2}\right\} \tag{102}
\end{align*}
$$

where

$$
\begin{align*}
\mu_{2 \mid 1}\left(x_{1}\right) & =\mu_{2}+\frac{\sigma_{2} \rho}{\sigma_{1}}\left(x_{1}-\mu_{1}\right) \tag{103}\\
\sigma_{2 \mid 1}^{2} & =\sigma_{2}^{2}\left(1-\rho^{2}\right) \tag{104}
\end{align*}
$$

This shows that the conditional distribution of x_{2} given x_{1} is the univariate Gaussian distribution $N\left(\mu_{2 \mid 1}\left(x_{1}\right), \sigma_{2 \mid 1}^{2}\right)$ with (conditional) mean $E\left\{\mathrm{x}_{2} \mid x_{1}\right\}=\mu_{2 \mid 1}\left(x_{1}\right)$ and (conditional) variance $\operatorname{var}\left(\mathrm{x}_{2} \mid x_{1}\right)=\sigma_{2 \mid 1}^{2}$.
Hence, the minimum mean-square error (MMSE) estimate of x_{2} given x_{1} is

$$
\begin{align*}
\hat{x}_{2}\left(x_{1}\right) & =\mu_{2}+\frac{\sigma_{2} \rho}{\sigma_{1}}\left(x_{1}-\mu_{1}\right) \tag{105}\\
& =\mu_{2}+\frac{\sigma_{1,2}}{\sigma_{1}^{2}}\left(x_{1}-\mu_{1}\right) \tag{106}
\end{align*}
$$

which is what we were asked to derive. Note that this estimate happens to be linear in x_{1} (although we did not require this) and hence agrees with the formula for the linear least-squares estimate of x_{2} based upon x_{1} (derived in recitation). In general, for jointly Gaussian random variables, linear least-squares estimation is equivalent to minimum mean-square estimation.

