
6.867 Machine Learning

Problem set 1

Due Friday, September 19, in recitation

Please address all questions and comments about this problem set to 6.867-staff@ai.mit.edu.
You do not need to use MATLAB for this problem set though you can certainly do so. We
will provide helpful hints along the way but if you are not familiar with MATLAB and
wish to use MATLAB in this problem set, please consult

http://www.ai.mit.edu/courses/6.867/matlab.html

and the links therein.

Part 1: Least-Squares Regression

Reference: Lectures 2 and 3, chapters 5-5.3

The goal of this section is to solidify basic concepts in least squares regression. Suppose
we have some simple dataset, {(xi, yi), i = 1, ..., n}, where xi and yi are real numbers. Our
model of how y is related to x is given by

y = f(x; w) + e (1)

f(x; w) = w′φ(x) (2)

where φ : R → Rd is a specified function (see below) which maps x to a d-dimensional
“feature” vector, φ(x) = (φ1(x), . . . , φd(x))′; w is a d-dimensional parameter vector w =
(w1, . . . , wd)

′; e is the prediction error, which we do not model explicitly. We will use w′ to
denote the transpose of any vector w, as is done in MATLAB. Note that our formulation
above does not explicitly include the offset parameter, or w0, as was done in the lectures.
We can incorporate the offset by defining φ1(x) = 1.

In the following, we wish to determine the least squares optimal parameters or ŵ. In other
words, we minimize the following squared prediction error:

J(w) =
1

n

∑
i

(yi − f(xi; w))2 (3)

By a similar argument as given in Lecture 2, the solution to this problem is

ŵ = (X ′X)−1X ′y (4)
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where X = (φ(x1), . . . , φ(xn))′ is a n × d matrix whose first row is φ1(x1), . . . , φd(x1)
and the last row is given by φ1(xn), . . . , φd(xn); The output vector y is defined as y =
(y1, y2, . . . , yn)′.

Note: We assume that the matrix (X ′X) is invertible so that the problem is well-posed,
i.e. there exists a unique minimizer. This is true when the feature vectors φ(x1), . . . , φ(xn)
associated with the training examples span the d−dimensional feature space. When the
feature vectors are long and the number of training points n is small, this is not at all
necessarily the case. For example, it cannot be the case whenever d > n.

Now, for this estimate ŵ the resulting prediction errors êi = yi − f(xi; ŵ) should be “un-
correlated” with the features:

1

n

∑
i

êiφk(xi) = 0, k = 1, . . . , d (5)

These conditions are obtained by taking the derivative of J(w) with respect to each wi,
i = 1, . . . , d, and setting them to zero. Note that the prediction error need not be zero
mean unless one of the features is a constant, i.e., if say φ1(x) = 1 for all x, so that

1

n

∑
i

êiφ1(xi) =
1

n

∑
i

êi = 0 (6)

The error is guaranteed to be “uncorrelated” with only features actually included in the
prediction.

You may wonder why we are talking about “correlation” in the first place. Let’s explore this
a bit further, here and in the problems that follow. For joint samples (ui, vi), i = 1, . . . , n,
the sample covariance is defined as

Σ̃u,v =
1

n

∑
i

(ui − ū)(vi − v̄) (7)

where ū = (1/n)
∑

i ui is the sample mean of u and similarly for v. The samples are
uncorrelated if the sample covariance is exactly zero, Σ̃u,v = 0. Covariance measures how
well one variable (or one set of samples) is linearly predictable from the other.

Problem 1

1. (5pts) Assuming that the first component of the feature vector is a constant, i.e.,
φ1(x) = 1, show that the joint “samples” (êi, φk(xi)), i = 1, . . . , n, are indeed uncor-
related for all k = 1, . . . , d according to our definition above.

2. (5pts) Show that all linear functions of the basis functions, i.e., functions of the form
w′φ(x) for some w ∈ Rd, are also uncorrelated with the prediction errors êi associated
with the least squares optimal parameters ŵ. In other words, show that (êi, w

′φ(xi)),
i = 1, . . . , n, are uncorrelated for any w.
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3. (5pts) Yet another way of understanding this result is that if we try to fit a linear
function (using the same basis functions) to the prediction errors, we can only get
zero. Let ŵ and êi, i = 1, . . . , n, be defined as above. If we now use ỹi = êi as the new
target outputs and repeat the parameter estimation step using these new outputs and
the same set of basis functions, show that the resulting new least squares parameters
are indeed identically zero.

4. (5pts) Suppose we change our feature representation of examples by rescaling the
basis functions, i.e., use φ̃(x) = (a1φ1(x), . . . , adφd(x))′ as the feature vector, where
ai, i = 1, . . . , d are any non-zero real numbers. Show that the unscaled solution,

the function ŵ′φ(x), is still optimal in the sense that ŵ′φ(x) = ˆ̃w
′
φ̃(x), where ˆ̃w

are the least squares optimal parameters for the scaled feature vectors. (Hint. use
correlation).

5. (Optional) Let’s go through a small numerical example to get started with MATLAB.
We will use the following data (expressed in MATLAB notation):

x = [-2 -1 0 1 2]’; y = [-2 -1 -1 0 1]’;

(both are column vectors). Let φ(x) = (1, x, x2)′. To find the least squares parame-
ters, say wh in MATLAB, we can construct the X matrix simply as

X = [ones(size(x)),x,x.^2];

where the dot refers to an elementwise operation. Matrix inverse in MATLAB is
inv(A) for any invertible A.

Find the least squares optimal parameters wh in this case. Plot the sample points
and the resulting function corresponding to the parameters.

Verify that the prediction error is indeed uncorrelated with the basis functions.

Repeat the procedure for φ(x) = sin(πx) (only one basis function). (note: π in
MATLAB is simply a constant pi). Does the result look reasonable? What should
the answer be?

Problem 2

The predictions we make in the regression formulation need not be one dimensional. We
can just as easily make predictions that are vector valued. Consider a simple example where
the input x takes only binary values x ∈ {0, 1} and y is a two-dimensional measurement
y ∈ R2. Here, the model is

y = f(x; W ) + e (8)

f(x; W ) = W ′φ(x) (9)
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where the feature vector is defined by φ(0) = (1, 0)′ and φ(1) = (0, 1)′; W is a two-
by-two matrix of model parameters; and both the prediction f(x; W ) and the prediction
errors ei = yi − f(xi; W ) are two-dimensional vectors. We now wish to determine Ŵ that
minimizes the squared error

J(W ) =
1

n

∑
i

||ei||2 =
1

n

∑
i

e′iei (10)

1. (10pts) Show that the least-squares estimate of W is

Ŵ = (X ′X)−1X ′Y (11)

where X = (φ(x1) . . . φ(xn))′ and Y = (y1 . . .yn)′. Hint. Show that the objective
decomposes so that each column of W may be obtained independently; you are es-
sentially solving two separate 1-dimensional regression problems.

Next, consider the data set:

x y
0 (−1,−1)′

0 (−1,−2)′

0 (−2,−1)′

1 (1, 1)′

1 (1, 2)′

1 (2, 1)′

2. (5pts) Compute Ŵ . Plot the data points yi and the columns of Ŵ ′ = (ŷ0 ŷ1) (note
the transpose).

3. (5pts) Verify that
∑

i êiφ(xi)
′ = 0 (a 2x2 matrix in this case). What is the interpre-

tation of the columns of Ŵ ′?

Part 2: Probabilistic Modeling and Likelihood

Reference: Lecture 3, chapter 4 (up to eq 4.20)

First a bit of background. Suppose we have a probability distribution or density p(x; θ),
where x may be discrete or continuous depending on the problem we are interested in. θ
specifies the parameters of this distribution such as the mean and the variance of a one
dimensional Gaussian. Different settings of the parameters imply different distributions
over x. The available data, when interpreted as samples x1, . . . , xn from one such distribu-
tion, should favor one setting of the parameters over another. We need a formal criterion
for gauging how well any potential distribution p(·|θ) “explains” or “fits” the data. Since
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p(x|θ) is the probability of reproducing any observation x, it seems natural to try to max-
imize this probability. This gives rise to the Maximum Likelihood estimation criterion for
the parameters θ:

θ̂ML = argmax
θ

L(x1, . . . , xn; θ) = argmax
θ

n∏
i=1

p(xi|θ) (12)

where we have assumed that each data point xi is drawn independently from the same
distribution so that the likelihood of the data is L(x1, . . . , xn; θ) =

∏n
i=1 p(xi; θ). Likelihood

is viewed primarily as a function of the parameters, a function that depends on the data.

The above expression can be quite complicated (depending on the family of distributions we
are considering), and make maximization technically challenging. However, any monoton-
ically increasing function of the likelihood will have the same maxima. One such function
is log-likelihood log L(x1, . . . , xn; θ); taking the log turns the product into a sum, making
derivatives significantly simpler. We will maximize the log-likelihood instead of likelihood.

Problem 4

Let x ∈ {0, 1} denote the result of a coin flip (x = 0 for ”tails”, and x = 1 for ”heads”).
The coin is potentially biased so that ”heads” occurs with probability θ1. Suppose also that
someone else observes the coin flip and reports to you ”heads” or ”tails” (denote this report
by y). But this person is unreliable and only reports the result correctly with probability
θ2 (the correctness of the report is independent of the coin toss).

1. (5pts) Write down the joint probability distribution P (x, y|θ) for all x, y (a 2x2 ma-
trix) as a function of the parameters θ = (θ1, θ2).

Suppose we have access to the following (joint) observations of x and y:

x y
1 1
1 0
0 0
1 0
1 1
0 0
0 1

2. (10pts) What are the maximum-likelihood (ML) values of θ1 and θ2? Provide the
details of your derivation as well as the answer. Hint. You can first confirm that
P (x, y|θ) = P (y|x, θ2)P (x|θ1), where the key observation is that the parameters can
be separated into the different components. After all the distribution of the coin
toss, governed by P (x|θ1), is independent of the accuracy of the report, contained in
P (y|x, θ2). This separation helps you to isolate the estimation of each parameter in
the log-likelihood criterion.
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3. (10pts) Let θ̂1(x1, . . . , xn) be the ML estimator of θ1 based on the observed data
x1, . . . , xn, where the data is viewed as independent samples from P (x|θ1) for some
fixed θ1. We can try to assess how well the estimator recovers the parameters θ1.
One useful measure is the bias of the estimator. This is defined as the expectation
E

[
θ̂1(X1, . . . , Xn)− θ1

]
, taken with respect to the true distribution of X1, . . . , Xn or∏

i P (Xi|θ1). The bias measures whether the estimator systematically deviates from
the true parameters θ1 that were used to generate the data. An estimator is called
unbiased if its bias is zero. Show that the ML estimator θ̂1 is indeed unbiased in this
sense.

4. (10pts) We have thus far used only two parameters θ1 and θ2 to specify the joint dis-
tribution over (x, y). This was possible because of the assumption that the accuracy
of the report (whether y = x) is independent of the coin toss (what x is). It takes
three parameters to specify an unconstrained joint distribution over (x, y). While
there are four possible configurations of the variables, there are only three parame-
ters that can be set independently (the fourth one is determined due to normalization,∑

x,y P (x, y) = 1). We can parameterize the joint distribution symmetrically in terms
of four numbers P (x, y) = θx,y, that sum to one

∑
x,y θx,y = 1. When we estimate the

maximum likelihood joint distribution, we estimate the ML setting of the parameters
θ̂x,y. What is the maximum likelihood estimate of P (x, y) in this case? Which model
has the higher log-likelihood?

5. (Optional) Show that the ML parameters θ̂x,y are unbiased estimates of θx,y.

6. (Optional) Suppose we are not sure which model is correct. Can you extend the
leave-one-out cross-validation procedure described in the linear regression context to
our setting here? Which model would the resulting cross-validation criterion choose
in this case?

Problem 5

Consider a bivariate Gaussian distribution x = (x1, x2)
′ ∼ N(µ, Σ) with probability density

p(x; µ, Σ) =
1

2π|Σ|1/2
exp{−1

2
(x− µ)′Σ−1(x− µ)} (13)

where µ = E{x} is the two-dimensional mean vector and Σ = E{(x − µ)(x − µ)′} is
the two-by-two covariance matrix (|Σ| is the determinant of the covariance matrix). The
Gaussian is fully specified by the parameters (µ, Σ).

1. (10pts) Given a collection of independent samples xi, i = 1, . . . , n, we wish to estimate
the model parameters (µ, Σ). The maximum-likelihood estimates are chosen so as to
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maximize the log-likelihood

J(µ, Σ) = log p(x1, . . . ,xn; µ, Σ) (14)

=
∑

i

log p(xi; µ, Σ) (15)

Show that the ML estimates based on data x1, . . . ,xn are given by the sample mean
and sample covariance:

µ̂ =
1

n

∑
i

xi (16)

Σ̂ =
1

n

∑
i

(xi − µ̂)(xi − µ̂)′ (17)

Hints. Start with the mean estimate. Express the Gaussian distribution in terms of
the inverse covariance matrix A = Σ−1 and use the following matrix derivatives

d

dA
(x− µ)′A(x− µ) = (x− µ)(x− µ)′

d

dA
log |A| = A−1 (18)

2. (10pts) The bi-variate Gaussian distribution allows the two variables to be dependent
on each other (the values of the variables co-vary). This dependence is fully described
by the covariance matrix. In light of problem 1 we suspect that this dependence is
captured by linearly predicting one from the other. Suppose we have access to x1 part
of the samples from a Gaussian model (µ, Σ) and wish to use them to estimate x2.
Derive the least squares optimal estimate x̂2(x1) that minimizes the expected squared
error E{(x2 − x̂2(x1))

2} (the exectation is over samples (x1, x2)
′ ∼ N(µ, Σ)). Hint.

Use the fact that the best estimate is of the form x̂2(x1) = E{x2|x1}, as discussed in
the lecture.
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