
6.867 Machine Learning

Solutions for Problem Set 2

Wednesday, October 8

Problem 1: active regression

(1-1) (5pts) Recall that ŵ ∼ N(w∗, (X ′X)−1) where w∗ are the true parameter values
(under the assumed model of how the outputs y were randomly generated given the inputs
x). Also, it was shown how this implies that E{f(x, ŵ)|x} = f(x;w∗) where f(x;w) =
w′φ(x). Now, we compute the variance of f(x; ŵ) given x.

var(f(x, ŵ)|x) = E{(f(x, ŵ)− f(x, w∗))2|x} (1)
= E{(φ′(x)(ŵ − w∗))2|x} (2)
= E{φ′(x)(ŵ − w∗)(ŵ − w∗)′φ(x))|x} (3)
= φ′(x)E{(ŵ − w∗)(ŵ − w∗)′}φ(x) (4)
= φ′(x)(X ′X)−1φ(x) (5)

(1-2)

(a) (3pts) Recall that X = (φ(x1) . . . φ(xn))′ where φ(x) is an m× 1 column vector. Then,

X ′X = (φ(x1) . . . φ(xn))

 φ′(x1)
...
φ′(xn)

 (6)

=
n∑

i=1

φ(xi)φ′(xi) (7)

This is clearly symmetric, (X ′X)′ = X ′X ′′ = X ′X. Also, for v ∈ Rm

v′(X ′X)v =
n∑

i=1

v′φ(xi)φ′(xi)v (8)

=
∑

i

(v′φ(xi))2 (9)

≥ 0 (10)

so that (X ′X) is positive semi-definite.

1

(b) (2pts) Let φ(x) = (1, x)′, then

X ′X =
∑

i

(
1
xi

)
(1 xi) (11)

=
∑

i

(
1 xi

xi x2
i

)
(12)

=

(
n

∑
i xi∑

i xi
∑

i x
2
i

)
(13)

(1-3) (5pts) Let x be distributed according to a symmetric distribution Q(x). By symmetry,
we must have EQ{x} = 0. The variance is EQ{x2} = v2. Then,

EQ{φ(x)φ′(x)} = EQ

{(
1 x
x x2

)}
(14)

=

(
1 0
0 v2

)
(15)

Evaluate the objective function J(X) from PS2 Eq. (10). First, rewrite X ′X as

X ′X = n

(
1 〈x 〉
〈x 〉

〈
x2
〉) (16)

where 〈 · 〉 denotes the average over the query points 〈x 〉 = 1
n

∑
i xi and

〈
x2
〉

= 1
n

∑
i x

2
i .

Now,

J(X) =
1
n

trace

(

1 〈x 〉
〈x 〉 〈x 〉2

)−1(
1 0
0 v2

) (17)

=
1
n

trace

{
1

〈x2 〉 − 〈x 〉2

(
〈x 〉2 −〈x 〉
− 〈x 〉 1

)(
1 0
0 v2

)}
(18)

=
1
n

trace

{
1

〈x2 〉 − 〈x 〉2

(〈
x2
〉

−v2 〈x 〉
− 〈x 〉 v2

)}
(19)

=
1
n

(〈
x2
〉
+ v2

〈x2 〉 − 〈x 〉2

)
(20)

Note that the denominator is just the sample variance
〈
(x− 〈x 〉)2

〉
=
〈
x2
〉
− 〈x 〉2.

(1-4) (10pts) Subject to the constraint x ∈ [−1,+1], how should we choose (x1, . . . , xn) so
as to make J(X) as small as possible? Let’s write n · J(X) in terms of the sample mean
and sample variance:

n · J(X) =
[
〈
(x− 〈x 〉)2

〉
+ 〈x 〉2] + v2

〈 (x− 〈x 〉)2 〉
= 1 +

〈x 〉2 + v2

〈 (x− 〈x 〉)2 〉
(21)

where we have used the fact that
〈
x2
〉

=
〈
(x− 〈x 〉)2

〉
+ 〈x 〉2. Apparently, we should like

to minimize the squared sample mean 〈x 〉2 while simultaneously maximizing the sample

2

variance
〈
(x− 〈x 〉)2

〉
(if this is possible, then it is optimal). For n even, the sample

variance is maximized when half the inputs are at x = −1 and half are at x = +1. Then,
the mean is zero and the sample variance is one. But this also minimizes the squared
sample mean. Hence, this achieves the smallest possible value of J(X) consistent with the
constraints, e.g. J(X) = (1 + v2)/n. This proves that the proposed strategy is optimal.
Any deviation from this strategy will either decrease the variance (while keeping the mean
fixed at zero) or both decrease the variance and increase the squared sample mean. Hence,
any other strategy is suboptimal.

It would have been fine to assume here that by symmetry the points we choose have to
have zero mean, i.e., 〈x 〉 = 0.

(1-5) (optional) If Q(x) no longer has to be symmetric around zero, then we can simply put
a point mass on x = 1. In other words, any sample x ∼ Q(x) would be 1 with probability
one. So we are only interested in the value of the function at x = 1 in this case. Querying
any other point would be useless.

Problem 2: active parameter estimation

(2-1) (10pts) We wish to choose θ = (θ1|0, θ1|1) to minimize the (conditional) log-likelihood:

l(θ) = log P (y(n)|x(n), θ) (22)
=

∑
i|xi=0

log P (yi|x = 0, θ1|0) +
∑

i|xi=1

log P (yi|x = 1, θ1|1) (23)

= l0(θ1|0) + l1(θ1|1) (24)

This decomposes into two separate optimization problems: choose θ1|0 to miniminize l0;
choose θ1|1 to minimize l1.

To optimize l0 w.r.t. θ1|0, first rewrite l0 as

l0(θ1|0) = Nx,y(0, 1) log θ1|0 + (Nx(0)−Nx,y(0, 1)) log(1− θ1|0) (25)

Then, compute derivative of l0 w.r.t. θ1|0 and set to zero.

∂l0
∂θ1|0

=
Nx,y(0, 1)

θ1|0
− Nx(0)−Nx,y(0, 1)

1− θ1|0
= 0 (26)

Solving for θ1|0 gives ML-estimate.

θ̂1|0 =
Nx,y(0, 1)

Nx(0)
(27)

By a similar calculation:

θ̂1|1 =
Nx,y(1, 1)

Nx(1)
(28)

3

We show that θ̂1|0 is an unbiased estimate of θ1|0. Take (conditional) expectation over
all possible configurations y(n) with x(n) held fixed (note that Nx(0) =

∑
i(1 − xi) is not

random).

E{θ̂1|0|x(n)} = E

{
Nx,y(0, 1)

Nx(0)

∣∣∣x(n)
}

(29)

=
1

Nx(0)
E

 ∑
i|xi=0

yi

∣∣∣x(n)

 (30)

=
1

Nx(0)

∑
i|xi=0

E{yi|xi = 0} (31)

=
1

Nx(0)

∑
i|xi=0

θ1|0 (32)

= θ1|0 (33)

By a similar argument, θ̂1|1 is an unbiased estimate of θ1|1.

Finally, show that θ̂1|1 and θ̂1|0 are uncorrelated. The covariance between two random
variables u and v is cov(u, v) = E{(u− E{u})(v − E{v})} = E{uv} − E{u}E{v}. This is
zero (u and v are uncorrelated) if and only if E{uv} = E{u}E{v}. To show this for our
two estimates, observe that θ̂1|0 is only a function of those outputs y|0 = (yi|xi = 0) where
the input was x = 0; likewise, θ̂1|1 only depends on those outputs y|1 = (yi|xi = 1) for input
x = 1. Then appeal to conditional independence of the outputs given the inputs, i.e.

P (y|0, y|1|x(n)) = P (y|0|x(n))P (y|1|x(n)) (34)

This implies

E{θ̂1|0(y|0)θ̂1|1(y|1)|x(n)} = E{θ̂1|0(y|0)|x(n)}E{θ̂1|1(y|1)|x(n)} (35)

hence the (conditional) covariance between the estimates (given x(n)) is zero.

Scoring: 6pts for estimates, 2pts for unbiased, 2pts for uncorrelated.

(2-2) (10pts) Two important facts:

• The variance of a random variable x scaled by a (non-random) constant c is var(cx) =
c2var(x).

• The variance of a sum of independent random variables is just the sum of the variances,
i.e. var(

∑
i xi) =

∑
i var(xi).

We compute the variance of θ̂1|0 (again holding x(n) fixed, expectation is over all possible
y(n)):

var(θ̂1|0|x(n)) = var
(

Nx,y(0, 1)
Nx(0)

∣∣∣x(n)
)

(36)

4

=
1

Nx(0)2
var

 ∑
i|xi=0

yi

∣∣∣x(n)

 (37)

=
1

Nx(0)2
∑

i|xi=0

var(y|x = 0) (38)

=
var(y|x = 0)

Nx(0)
(39)

=
θ1|0(1− θ1|0)

Nx(0)
(40)

where we have used the hint in the last line.

By a similar calculation:

var(θ̂1|1|x(n)) =
θ1|1(1− θ1|1)

Nx(1)
(41)

(2-3) (10pts) Let V (xn+1) = J(x(n); θ̂)−J(x(n+1); θ̂), we wish to select xn+1 = arg maxx∈{0,1} V (x).

Evaluate V for xn+1 = 0.

V (0) =

(
θ̂1|0(1− θ̂1|0)

Nx(0)
+

θ̂1|1(1− θ̂1|1)
Nx(1)

)
−
(

θ̂1|0(1− θ̂1|0)
Nx(0) + 1

+
θ̂1|1(1− θ̂1|1)

Nx(1)

)
(42)

= θ̂1|0(1− θ̂1|0)
(

1
Nx(0)

− 1
Nx(0) + 1

)
(43)

=
θ̂1|0(1− θ̂1|0)

Nx(0)(Nx(0) + 1)
(44)

Likewise, for xn+1 = 1 we have

V (1) =
θ̂1|1(1− θ̂1|1)

Nx(1)(Nx(1) + 1)
(45)

We pick xn+1 = 1 if V (0) < V (1) and pick xn+1 = 0 if V (0) > V (1). Equivalently, pick
xn+1 = 1 if and only if

Nx(1)(Nx(1) + 1)
Nx(0)(Nx(0) + 1)

<
θ̂1|1(1− θ̂1|1)

θ̂1|0(1− θ̂1|0)
(46)

(otherwise pick xn+1 = 0). Note that the right hand side of this comparison converges to
a constant (a characteristic of the underlying true conditional model P (y|x, θ))

r(θ) =
θ1|1(1− θ1|1)
θ1|0(1− θ1|0)

(47)

(the ratio of the variances of the two conditional distributions), such that this selection
rule drives the ratio on the left hand side towards r(θ). The sampling of x’s is biased so
that the more uncertain conditional distribution (having higher variance) is sampled more
frequently.

5

(2-4) (20pts) The following matlab script hw2 prob2.m (with the “active” flag set to 1) runs
the active learning procedure and displays parameter estimates and associated uncertainties.
The results are stochastic (vary from run to run). The student is invited to run this script
yourself (distributed with solutions).

% ’hw2_prob2.m’
% 6.867 Machine Learning
% Fall 2003

% initialization data
x = [0 0 0 0 0 1 1 1 1 1]’;
y = [0 0 1 0 1 1 1 1 1 0]’;
% initialize counters.
n0 = sum(x==0);
n1 = sum(x==1);
n01 = sum(x==0 & y==1);
n11 = sum(x==1 & y==1);

data = zeros(500,6);
active = 0; % set to 0 for part (2-5)

% active learning loop...
for k = 1:500

% calculate ML theta params
theta0 = n01/n0;
theta1 = n11/n1;
% select x to sample next
sigma0 = theta0 * (1-theta0);
sigma1 = theta1 * (1-theta1);
V0 = sigma0 / (n0*(n0+1));
V1 = sigma1 / (n1*(n1+1));
if (active)
x = (V1 > V0);

else
x = (rand(1,1)>0.5); % stochastic sampling

end
% compute J’s (for plots)
J_est = sigma0/n0 + sigma1/n1;
J_true = (.4*.6)/n0 + (.9*.1)/n1; % for comparison only
% sample output for selected x
y = query(x);
% update counters
if (x)
n1=n1+1;
if (y)

6

n11=n11+1;
end

else % x==0
n0=n0+1;
if (y)

n01=n01+1;
end

end
% store data for generating plots
data(k,1) = n0;
data(k,2) = n1;
data(k,3) = theta0;
data(k,4) = theta1;
data(k,5) = J_est;
data(k,6) = J_true;

end

k = [1:500];

figure(1);
plot(k,data(k,3),’-’,k,data(k,4),’--’);
legend(’theta0’,’theta1’);
xlabel(’iteration’);
ylabel(’estimate’);
title(’theta estimates’);

figure(2);
plot(k,data(k,5),’--’,k,data(k,6),’-’);
legend(’estimated’,’actual’);
xlabel(’iterations’);
ylabel(’J value’);
title(’overall variance’);

figure(3);
n = k + 10;
plot(k,n.*data(k,5)’,’--’,k,n.*data(k,6)’,’-’);
legend(’estimated’,’actual’);
xlabel(’iterations’);
ylabel(’n times J’);
title(’rescaled overall variance’);

(2-5) (10pts) Rerun the script with the “active” flag set to 0. Observe that overall variance
is typically larger (at the end of the run) under the stochastic sampling method. Averaging
over many runs, the active learning “rate” nJ converges to about .63 while the stochastic
sampling converges to about .67. Hence, the active learning method, by biasing sampling

7

toward the more uncertain conditional distribution, does a better job on minimizing the
overall variance of our estimates.

Problem 3: generative and discriminative models

All MATLAB code for this problem is available in the script hw2 prob3.m. The script
uses an additional function loglogistic(z) (not provided earlier) that simply evaluates
log g(z) in a numerically stable manner. We will discuss here excerpts of the code and
results. Please see/run the code for details.

(3-1) (10pts)

load data.mat;
n_train = size(trainD.y,1);
n_test = size(testD.y,1);

figure(1); plotdata(trainD); title(’training data’);
figure(2); plotdata(testD); title(’test data’);
mix = mixtrain(trainD.X,trainD.y);

% part a
% classify training data
train_loglik0 = mixloglik(trainD.X,zeros(size(trainD.y)),mix);
train_loglik1 = mixloglik(trainD.X,ones(size(trainD.y)),mix);
mix_train_err = mean(trainD.y ~= (train_loglik1 > train_loglik0))
% classify test data
test_loglik0 = mixloglik(testD.X,zeros(size(testD.y)),mix);
test_loglik1 = mixloglik(testD.X,ones(size(testD.y)),mix);
mix_test_err = mean(testD.y ~= (test_loglik1 > test_loglik0))
% part b
figure(3); mixboundary(mix,trainD); title(’mix decision boundary’);
% part c : compute the average conditional log-likelihoods for
% comparison with logistic models
mix_condloglik_train = (sum(mixloglik(trainD.X,trainD.y,mix)- ...
log(exp(train_loglik0)+exp(train_loglik1))))/n_train
mix_condloglik_test = (sum(mixloglik(testD.X,testD.y,mix)- ...
log(exp(test_loglik0)+exp(test_loglik1))))/n_test

mix_train_err =

0.0450

mix_test_err =

8

0.0490

mix_condloglik_train =

-0.1003

mix_condloglik_test =

-0.1170

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

2
mix decision boundary

(3-2) (10pts)

% (3-2)
% part a
w = logisticreg(trainD.X,trainD.y)
input_train = trainD.X * w(2:length(w)) + w(1); % discriminant
input_test = testD.X * w(2:length(w)) + w(1);
logistic_train_err = mean(trainD.y ~= (input_train > 0))
logistic_test_err = mean(testD.y ~= (input_test > 0))

condloglik_train = (sum(loglogistic(input_train(find(trainD.y==1)))) + ...
sum(loglogistic(-input_train(find(trainD.y==0)))))/n_train

% where we have used the fact that log(1-g(z)) = log g(-z)

condloglik_test = (sum(loglogistic(input_test(find(testD.y==1)))) + ...

9

sum(loglogistic(-input_test(find(testD.y==0)))))/n_test

% part b
figure(4); boundary(w,trainD); title(’1st-order logistic decision boundary’);

w =

-0.7150
-7.7597
-7.0605

logistic_train_err =

0.0300

logistic_test_err =

0.0520

condloglik_train =

-0.1063

condloglik_test =

-0.1324

(3-2c) We would typically expect the discriminative method to achieve a higher conditional
log-likelihood of the labels in the training set because this is precisely the criterion that
the discriminative method is optimizing; the generative approach optimizes the joint log-
likelihood of labels and examples and therefore deals with the conditional log-likelihood
only indirectly. The results seem a bit contrary to this statement. The Gaussian mixture
model performs better on the training set in terms of the conditional log-likelihood. The
reason is that our comparison isn’t fair. The Gaussian mixture model is more flexible,
able to represent all quadratic decision boundaries, whereas the logistic regression model is
restricted to linear boundaries.

10

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

2
1st−order logistic decision boundary

(3-3) (10pts)

phi = degexpand(trainD.X,2);
w = logisticreg(phi,trainD.y)
input_train = phi * w(2:length(w)) + w(1);
phi = degexpand(testD.X,2);
input_test = phi * w(2:length(w)) + w(1);
logistic_train_err2 = mean(trainD.y ~= (input_train > 0))
logistic_test_err2 = mean(testD.y ~= (input_test > 0))

condloglik_train2 = (sum(loglogistic(input_train(find(trainD.y==1)))) + ...
sum(loglogistic(-input_train(find(trainD.y==0)))))/n_train

condloglik_test2 = (sum(loglogistic(input_test(find(testD.y==1)))) + ...
sum(loglogistic(-input_test(find(testD.y==0)))))/n_test

figure(5); boundary(w,trainD,2); title(’2nd-order logistic decision boundary’);

w =

-0.8767
-7.5253
-11.0026

3.6968
1.8570
1.8570
-5.9708

11

logistic_train_err2 =

0.0350

logistic_test_err2 =

0.0500

condloglik_train2 =

-0.0950

condloglik_test2 =

-0.1221

The quadratic logistic regression model has the highest conditional log-likelihood of the
training labels, as expected. It can represent the same boundaries as the Gaussian mixture
model but it is trained discriminatively. This is indeed what should always happen (without
regularization). Note that the linear logistic model achieves a lower classification error in
the training set. This is possible since we are not optimizing the classification error directly.
The two measures are related but they are not identical.

The Gaussian mixture model seems to generalize the best, both in terms of classification
error and the conditional log-likelihood of the test labels. This is because the data points
were indeed generated from such a Gaussian mixture model.

12

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

2
2nd−order logistic decision boundary

(3-4) (10pts)

We first note that a second order (quadratic) function of a vector x ∈ <d can be written
as x′Ax + b′x + c where A ∈ <d×d is a symmetric (but not necessarily positive definite)
matrix, b ∈ <d is vector, and c ∈ < is a scalar. Hence, logistic 2nd order models are given
by Pr (Y = 1|x) = 1

1+e−(x′Ax+b′x+c) for any such A, b and c.

Now, for a generative Gaussian mixture model with Pr (y) = py and

Pr (x|y) =
1√

2π|Σy|
e−

1
2
(x−µy)′Σ−1

y (x−µy) (48)

we have:

Pr (Y = 1|x) =
Pr (Y = 1)Pr (x|Y = 1)

Pr (Y = 1)Pr (x|Y = 1) + Pr (Y = 0)Pr (x|Y = 0)
(49)

=
p1

1√
2π|Σ1|

e−
1
2
(x−µ1)′Σ−1

1 (x−µ1)

p1
1√

2π|Σ1|
e−

1
2
(x−µ1)′Σ−1

1 (x−µ1) + p0
1√

2π|Σ0|
e−

1
2
(x−µ0)′Σ−1

0 (x−µ0)
(50)

=
1

1 + p1

1−p1
e−

1
2
((x−µ0)′Σ−1

0 (x−µ0)−(x−µ1)′Σ−1
1 (x−µ1)−|Σ0|+|Σ1|)

(51)

=
1

1 + e−
1
2
((x−µ0)′A0(x−µ0)−(x−µ1)′A1(x−µ1)+|A0|−|A1|)+r

(52)

=
1

1 + e−
1
2
x′(A0−A1)x+(µ′0A0−µ′1A1)x− 1

2
(µ′0Aµ0−µ′1Aµ′1+|A0|−|A1|)+r

(53)

=
1

1 + e−(x′Ax+b′x+c)
(54)

where Ay = Σ−1
y and r = log p1

1−p1
and

13

• A = 1
2(A0 − A1) = 1

2(Σ−1
0 − Σ−1

1) is a symmetric matrix (since A0, A1 are both
symmetric, being inverses of symmetric matrices),

• b′ = −(µ′
0A0 − µ′

1A1) = −(µ′
0Σ

−1
0 − µ′

1Σ
−1
1)

• and c = 1
2(µ′

0Aµ0−µ′
1Aµ′

1 + |A0|− |A1|)− r = 1
2(µ′

0Σ
−1
0 µ0−µ′

1Σ
−1
1 µ′

1−|Σ0|+ |Σ1|)−
log p1

1−p1
.

This establishes that the conditional distribution Pr (y|x) of a Gaussian mixture model is a
second order logistic. To establish that every second order logistic model can be interpreted
as the conditional distribution of a Gaussian mixture model, we must find, for each A, b, c,
suitable p1 ∈ [0, 1], µ0, µ1 ∈ <d and symmetric positive definite Σ0,Σ1 ∈ <d×d such that
plugging these in above, we would recover our desired A, b, c.

Given A, b, c we first determine the inverse covariances A0 and A1. These should be selected
such that half their difference is equal to A. The difficult constrain here is that A0, A1 need
to be positive definite. If A is already positive definite, this is not a problem, and we can
select, for example, A0 = 2A and A1 = A. If A is not positive definite, let −λ ≤ 0 be the
smallest eigenvalue of A, then A + (1 + λ)I is positive definite (since we are adding 1 + λ
to all eigenvalues, hence making them all positive). Selecting A0 = 2(A + (1 + λ)I) and
A1 = 2(1 + λ)I, both positive definite, yields A = 1

2(A0 − A1). The covariance matrices
will be Σ0 = A−1

0 and Σ1 = A−1
1 .

After determining the covariance matrices, we next set the means of the two Gaussians
according to b. We can always set µ0 = 0 and µ1 = Σ1b yielding −(µ′

0Σ
−1
0 − µ′

1Σ
−1
1) =

−(0Σ−1
0 − b′Σ1Σ−1

1) = b′.

To complete the correspondence, we need to set r = 1
2(µ′

0Aµ0−µ′
1Aµ′

1 + |A0|− |A1|)− c by
inverting r(p1) = log p1

1−p1
. This is possible since this transformation maps values between

zero and one (the possible values of the probability p1) to the entire range of real numbers,
with r(0) = log 0 = −∞ and r(1) = log∞ = ∞.

Note that we had great freedom in selecting the covariance matrices and means, each time
having twice as many parameters as constraints. There are many possible Gaussian mixture
models that yield the same (second order logistic) conditional distribution.

(3-5) (10pts)

As we proved above, the conditional distribution Pr (y|x) resulting from a Gaussian mixture
model is itself a possible second order logistic model. The conditional log-likelihood of the
Gaussian mixture model depends only on this conditional distribution. But when we train
a logsitic model, we specifically maximize the conditional log-likelihood, hence the trained
logistic model will have the maximal log-likelihood of all possible second order logistic
models, and it cannot be lower than the conditional log-likelihood of the trained Gaussian
mixture model (since this conditional log-likelihood is also in the class of second order
logsitic models).

Note that when training a Gaussian mixture model, we maximize the joint likelihood rather
then the conditional likelihood, hence although the trained Gaussian mixture model is
guranteed to have maximal joint likelihood, it is not guranteed to have maximal conditional
likelihood (and will usually not have maximal conditional likelihood).

14

(3-6) (10pts)

for k = 1:4
phi = degexpand(trainD.X,k);
w = logisticreg(phi,trainD.y);
input_train = phi * w(2:length(w)) + w(1);

condloglik_train = (sum(loglogistic(input_train(find(trainD.y==1)))) + ...
sum(loglogistic(-input_train(find(trainD.y==0)))))/n_train;

phi = degexpand(testD.X,k);
input_test = phi * w(2:length(w)) + w(1);

condloglik_test = (sum(loglogistic(input_test(find(testD.y==1)))) + ...
sum(loglogistic(-input_test(find(testD.y==0)))))/n_test;

fprintf(’deg: %d, train log-lik: %f, ave test log-lik: %f\n’,k, ...
condloglik_train,condloglik_test);

end

deg: 1, train log-lik: -0.106334, ave test log-lik: -0.132366
deg: 2, train log-lik: -0.095050, ave test log-lik: -0.122121
deg: 3, train log-lik: -0.060270, ave test log-lik: -0.267130
deg: 4, train log-lik: -0.053588, ave test log-lik: -0.398441

We naturally get more complex classifiers as we increase the degree of the polynomial
features. The resulting sets of classifiers are nested in the sense that any classifier corre-
sponding to degree m−1 features is contained in the set of classifiers we can represent with
degree m features. Because of this nested organization, the structural error must go down
(or at least not increase) as a function of the degree. However, the approximation error will
necessarily go up since it will be harder to find the classifier that generalizes the best when
the set of possibilities is larger but the number of training examples remains the same.

Let’s see how we can use these ideas to explain the results. First, the training log-likelihood
has to increase as a function of degree since the classes are nested. Second, our results
indicate that the test conditional log-likelihood first increases and then decreases rapidly.
The increase has to come from reducing structural error (lower structural error means higher
likelihood) since the approximation error can only increase (and therefore would decrease
the likelihood). After degree 2 the error is likely to be dominated by the approximation
error.

We know that degree 2 gives the correct model, since we generated the data. In this case
the structural errors corresponding to degree 3 and 4 features are exactly the same as for
degree 2 (the correct answer). We cannot do better than the correct answer in terms of
structural error. So the rapid decline of the log-likelihood after degree 2 is indeed due to
only the approximation error.

15

