
6.867 Machine Learning

Problem Set 2

Due date: Monday October 6

Please address all questions and comments about this problem set to 6.867-staff@ai.mit.edu.
You will need to use MATLAB for some of the problems but most of the code is provided.
If you are not familiar with MATLAB, please consult

http://www.ai.mit.edu/courses/6.867/matlab.html

and the links therein.

Problem 1: active regression

Reference: Lecture three; Chapter 5-5.4.1

Let’s start by defining our model and assumptions. We use additive regression models with
fixed basis functions {φi(x)}i=1,...,m so that

f(x; w) = φ(x)′w =
m∑

i=1

φi(x)wi (1)

where the first basis function, φ1(x), is typically a constant. The basis functions may be
of various different types. They may, for example, simply return specific components of
the input vector as in φi(x) = xi reducing the above model to a linear model in the input
space. Alternatively, the basis functions could measure similarities to “prototypes” as in
radial basis functions:

φi(x) = exp
{
− 1

2s2
‖x− µi‖2

}
(2)

where µi specifies a point in the input space (e.g., representing a cluster or an individual
training point). The parameter s specifies the spread around µi, i.e., how quickly the basis
function goes to zero as we deviate from the prototype.

The observed outputs y are assumed to be related to the inputs x through some “true”
weights w∗ = (w∗

1, . . . , w
∗
m)′, and independently corrupted with zero mean Gaussian noise

with variance σ2. We do not know a priori what these weights w∗ are but only that they
exist. This is nevertheless a strong assumption. Our class of statistical models, linear
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models with a specific set of basis functions, is assumed to contain the true model. We will
look at examples of what happens when the assumption is not correct.

Now, for any n input points {x1, . . . ,xn}, we model the corresponding outputs {y1, . . . , yn}
as  y1

· · ·
yn

 =

 φ1(x1) · · · φm(x1)
· · · · · · · · ·

φ1(xn) · · · φm(xn)


 w1

· · ·
wm

+

 ε1

· · ·
εn

 (3)

y = Xw + e (4)

where e ∼ N(0, σ2 I ). The overall noise variance σ2 is unknown but largely insignificant
for our purposes here. The value of σ2 will certainly affect any measure of uncertainty we
will use about the model parameters or predictions but has little effect on our decisions
concerning which points we should query next. We define φ(x) = (φ1(x), . . . , φm(x))′ as
the feature vector (column vector) corresponding to an input point x, and therefore write
the matrix X as (φ(x1) · · ·φ(xn))′.

We already know from lectures that given X, i.e., given the input points, the noise in
the observed outputs cause our parameter estimates ŵ to be Gaussian random variables:
ŵ ∼ N(w∗, σ2(X′X)−1). In other words, if we repeatedly requested a new set of outputs
corresponding to the input points, and estimated ŵ based on each such sample, then the
resulting estimates ŵ would appear as points drawn from a Gaussian distribution with
mean w∗ and covariance σ2(X′X)−1).

For simplicity (and with no real loss of generality), we will assume hereafter that σ2 = 1. It
will be also helpful to define the inverse covariance matrix An = (X′X), where the subscript
indicates the number of input points.

Our predictions ŷ(x) = f(x, ŵ) = φ(x)′ŵ are unbiased in the sense that

E{ ŷ(x) } = E{φ(x)′ŵ } = φ(x)′E{ ŵ } = φ(x)′w∗ = y∗(x) (5)

where the expectation is over the noise in the outputs (uncertainty in the parameter esti-
mates ŵ).

(1-1) (5pts) Show that the variance of the predictions at any specific point x is given by
Var( ŷ(x) ) = φ(x)′(X′X)−1φ(x), where we continue to assume that σ2 = 1.

We consider here a simple variant of the active learning problem where we know the dis-
tribution, Q(x), over the inputs x that we will be tested on. For example, in practice, we
might know the dataset of test examples for which we need to generate predictions. The
goal in this case is to minimize the average variance of our predictions

J(X) = Ex∼Q {Var( ŷ(x) ) } (6)

= Ex∼Q

{
φ(x)′(X′X)−1φ(x)

}
(7)
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= Ex∼Q

{
trace

[
φ(x)′(X′X)−1φ(x)

] }
(8)

= Ex∼Q

{
trace

[
(X′X)−1φ(x)φ(x)′

] }
(9)

= trace
[
(X′X)−1Ex∼Q {φ(x)φ(x)′ }

]
(10)

where we have used the fact that trace(AB) = trace(BA) whenever both matrix products
make sense. The trace is defined as the sum over the diagonal elements: trace(A) =

∑
i Aii.

The trace of a real number is just the number since the number can be viewed as a 1x1
matrix. This is how we introduced the trace in the above derivation.

Note that the expectation with respect to Q is over the test points whereas the variance is
evaluated with respect to the outputs corresponding to the existing training inputs. How
should we select the input points to minimize this criterion? Perhaps as random samples
from Q(x)? We need a few steps to get to the answer.

For simplicity we’ll assume that the input is one dimensional, x ∈ [−1, 1], and φ(x) = (1, x)′.
We will also try to select all the training inputs x1, . . . , xn at once rather than picking them
sequentially.

(1-2) (5pts) Let An be the inverse covariance matrix based on n training examples.

a) Show that

An =
n∑

i=1

φ(xi)φ(xi)
′ (11)

Make sure you understand that An is symmetric and positive (semi-)definite for all
choices of x1, . . . , xn.

b) Write An explicitly in terms of n,
∑

i xi, and
∑

i x
2
i .

(1-3) (5pts) Let Q(x) be any symmetric distribution around zero with variance v2. For
example, N(0, v2) would qualify. Evaluate Ex∼Q {φ(x)φ(x)′ } and the resulting ob-
jective J(X).

(1-4) (10pts) Show that we would still choose all the input points to be x = −1 or x = 1
with equal proportions (assuming n is even). The result holds even as v2 → 0, i.e.,
even when we only care about predictions at x = 0.

(Hint: use the fact that the input points would have to be in a symmetric arrangement
around zero. What can you say about

∑
i xi in this case?).

(1-5) (optional) Can you find any distribution Q(x) to avoid selecting x = −1 and x = 1
equally often?
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Problem 2: active parameter estimation

In this problem we consider a simple conditional model of the form P (y|x) where x ∈ {0, 1}
and y ∈ {0, 1}. We parameterize this model by two parameters θ1|0 = P (1|0) and θ1|1 =
P (1|1) so that the conditional probability matrix is of the form

P (y|x, θ) :

(
P (0|0) P (0|1)
P (1|0) P (1|1)

)
=

(
1− θ1|0 1− θ1|1

θ1|0 θ1|1

)
(12)

Our model does not specify P (x).

Let’s start by finding the maximum likelihood setting of the parameter θ = (θ1|0, θ1|1)
′,

setting that maximizes the conditional log-likelihood criterion. On the basis of these esti-
mates we can then successively select inputs x that improve the expected accuracy of the
parameters.

(2-1) (10pts) Suppose we sample the conditional model with preselected x values x(n) =
(x1 . . . xn)′ and obtain the corresponding sample outputs y(n) = (y1 . . . yn)′. Based on
the data (x(n),y(n)), derive the maximum-likelihood parameter estimates θ̂

θ̂ = arg max
θ

log P (y(n)|x(n), θ) (13)

Express your answer in terms of the statistics Nx,y(0, 1), Nx,y(1, 1), Nx(0), and Nx(1)
where Nx,y(x, y) is the number of times (x, y) = (x, y) and Nx(x) is the number of
times x = x.

Is the resulting estimator θ̂(x(n),y(n)) (viewed as a function of the data) unbiased?
Are θ̂1|0(x

(n),y(n)) and θ̂1|1(x
(n),y(n)) uncorrelated given x(n)? Briefly explain your

answer.

(2-2) (10pts) Derive expressions for the variances

Var(θ̂1|0(x
(n),y(n))|x(n)) (14)

Var(θ̂1|1(x
(n),y(n))|x(n)) (15)

in terms of the statistics Nx(0) and Nx(1) and the parameters θ = (θ1|0, θ1|1)
′.

(Hint. the variance of a biased 0/1 coin is p(1− p) where p is the probability of 1).

(2-3) (10pts) We should be able to choose the inputs x(n) so as to improve the resulting
parameter estimates. Specifically, we’d like to choose the inputs so as to minimize
the overall variance of the estimators

J(x(n); θ) = Var(θ̂1|0(x
(n),y(n))|x(n)) + Var(θ̂1|1(x

(n),y(n))|x(n)) (16)

which is a function of both θ and the inputs. We cannot directly use this criterion
to select inputs since we do not know θ. We can, however, plug in our current best
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estimate of θ or θ̂ and use J(x(n); θ̂) as the criterion to select the next input xn+1 to
query. Derive the selection rule for picking xn+1 = 0 or xn+1 = 1 based upon which
choice reduces the overall variance the most:

xn+1 = arg max
xn+1=0,1

[J(x(n); θ̂)− J(x(n+1); θ̂)] (17)

This should reduce to a simple comparison involving the statistics Nx(·) and the
estimates θ̂ = (θ̂1|0, θ̂1|1)

′. Note that θ̂ is viewed here as fixed since it represents our
prior knowledge at the time of selecting xn+1. The actual value naturally depends on
all the outputs we have observed so far in response to the inputs x(n).

(2-4) (20pts) We have provided you with a MATLAB function y = query(x) which sim-
ulates the conditional model for some unknown parameters θ∗ (which you are trying
to estimate). Write a MATLAB script to implement your active learning procedure.
Initilize your procedure with x(10) = (0 0 0 0 0 1 1 1 1 1)′ and y(10) = (0 0 1 0 1 1 1 1 1 0)′.
Run your active learning method for 500 steps1. Plot the scaled estimated variance
n · J(x(n); θ̂), where the scaling comes from the fact that we’d expect the variance to
go down roughly as 1/n. Also plot n · J(x(n); θ∗), where θ∗ = (0.4, 0.9)′ are the true
parameters for this problem. We typically don’t have these but they are useful for
comparison.

Hint. To implement your procedure, it is sufficient to accrue just the statistics
Nx,y(0, 1), Nx,y(1, 1), Nx(0), and Nx(1).

(2-5) (10pts) Suppose that we instead randomly sampled x s.t P (x = 1) = 0.5. Repeat the
above experiment and compare the performance of these two learning methods (active
vs. stochastic). You may have to run each method a couple of times to convince
yourself that the differences (if any) are typical. Which one is better? Briefly explain
the differences.

Problem 3: generative and discriminative models

We can solve classification tasks from two different perspectives. In a generative approach,
we construct a joint distribution over both the examples x and labels y. In other words,
we choose a parametric family P (x, y|θ), where the parameters θ specify each distribution
in the family. The parameters are estimated by maximizing the joint log-likelihood of the
data:

l(D; θ) =
n∑

i=1

log P (xi, yi|θ) (18)

1You could also implement a stopping criterion based on the remaining variance J(x(n); θ̂)
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where the sum is over the training data D = {(x1, y1), . . . , (xn, yn)}. We are maximizing
here the joint likelihood of labels and examples although we only need the conditional
probabilities P (y|x, θ) for the classification task.

In a discriminative approach, on the other hand, we only care about the conditional dis-
tribution P (y|x, w) such as the logistic regression model

P (y = 1|x, w) = g( w0 +
d∑

i=1

xiwi ) (19)

The parameters w are estimated by maximizing the conditional log-likelihood

lc(D; w) =
n∑

i=1

log P (yi|xi, w) (20)

Note that while the set of possible conditionals P (y|x, w) may in some cases be the same
set as the conditionals derived from a generative model, P (y|x, θ), they are typically not
the same as the parameters are estimated differently from the data.

In this problem we estimate both class conditional Gaussian models and logistic regression
models. The data for this problem is in data.mat and you can load it into MATLAB
by load data.mat. This will give you two structures, trainD and testD, and access to
examples via trainD.X and labels trainD.y.

The task is to use the training data in order to learn to predict the labels of yet unobserved
points (test data).

(3-1) (10pts) Fit generative Gaussian models to the training data trainD. We have pro-
vided you code for doing this mix = mixtrain(trainD.X,trainD.y). As a result
mix{1}.mu has the mean (row vector) and mix{1}.cov is the covariance of the class
conditional Gaussian corresponding to y = 0 examples. Similarly, mix{2} contains
the Gaussian over y = 1 examples.

a) Plot the classification error on the training and test sets. To evaluate the classifica-
tion error you can use loglik = mixloglik(X,y,mix) that returns a log-probability
log P (xi, yi|θ) for each row.

b) Plot the data and the resulting decision boundary using mixboundary(mix,trainD).
This is just so you can view the result.

c) We also need the conditional log-likelihoods of the training and test sets under
this model for comparison with the logistic regression model. Return the code and
the values. (Hint. use the code provided for evaluating log P (xi, yi|θ)).

(3-2) (10pts) Fit a linear logistic regression model on the same data. You can do this by
w = logisticreg(trainD.X,trainD.y). Note that the first component of w will be
the bias term.
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a) Evaluate the conditional log-likelihood on the training and test sets as well as the
classification errors.

b) Plot the data and the resulting decision boundary using boundary(w,trainD).
Again, this is just for you to visualize the result.

c) Compare these results to the above Gaussian case. Can you explain the differences?

(3-3) (10pts) Fit a 2nd order logistic regression model on the training set and repeat the
above steps. You can expand any input matrix X (where rows correspond to each
example) to a matrix of second order feature vectors by phi = degexpand(X,2).

Compare the resulting conditional log-likelihoods to your earlier results involving the
class-conditional Gaussian and the linear logistic model. Do the differences make
sense? (you may wish to solve the next two problems before completing your answer
here).

(3-4) (10pts) Show that the conditional distributions P (y|x) possible with a generative
Gaussian mixture model (class condititional Gaussians) are exactly the 2nd order
logistic conditional distributions models.

(3-5) (10pts) Show that the conditional log-likelihood on the training set attained by a 2nd
order logistic regression model will never be lower than the conditional log-likelihood
of the maximum likelihood Gaussian mixture model.

(3-6) (10pts) Train logistic regression models with 1-4 degree polynomial feature vectors.
Again use phi = degexpand(X,2) with different degrees to generate the appropri-
ate feature vectors. Plot or list the training/test log-conditional likelihoods as a
function of the polynomial degree. Explain how they behave in terms of structural
and approximation errors. Note that we measure “errors” here in terms conditional
log-likelihoods that are maximized rather than minimized.
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