
6.867 Machine Learning

Solutions for Problem Set 3

Monday, October 27

Problem 1: Support Vector Machines

By definition, an n × n matrix K = (kij) (with entries kij) is positive semi-definite if
f ′Kf ≥ 0 for all f ∈ Rn. We say that the function K(xi,xj) is a (valid) kernel function if for
any finite set {x1, . . . ,xn} the matrix K defined by kij = K(xi,xj) is positive semidefinite.

(1-1) (5pts) Given that K1 and K2 are kernel functions, show that K(xi,xj) = K1(xi,xj)+
K2(xi,xj) is also a kernel function. For arbitrary {x1, . . . ,xn} and f ∈ Rn, we show that

f ′Kf =
∑
ij

fiK(xi, xj)fj (1)

=
∑
ij

fi(K1(xi, xj) + K2(xi, xj))fj (2)

=

∑
ij

fiK1(xi, xj)fj

+

∑
ij

fiK2(xi, xj)fj

 (3)

=
{
f ′K1f

}
+
{
f ′K2f

}
(4)

≥ 0 (5)

where the last line follows as both f ′K1f ≥ 0 and f ′K2f ≥ 0 because K1 and K2 are kernel
functions. Hence, K is a kernel function.

(1-2) (5pts) Let K̃(xi, xj) = f(xi)K(xi, xj)f(xj), where K is a kernel function. Show that
K̃ is also a kernel function. For arbitrary {x1, . . . ,xn} and g ∈ Rn, we show that

g′K̃g =
∑
ij

giK̃(xi, xj)gj (6)

=
∑
ij

gif(xi)K(xi, xj)f(xj)gj (7)

=
∑
ij

hiK(xi, xj)hj (8)

= h′Kh (9)
≥ 0 (10)

where h ∈ Rn is defined by hi = gif(xi) and the last line follows because K is a kernel
function. Hence, K̃ is a kernel function.

1

(1-3) (5pts) Let K1 and K2 be kernel functions, show that K(xi, xj) = K1(xi)K2(xj) is
also a kernel function.

First Approach. Fix {x1, . . . ,xn} and f ∈ Rn. Define n × n matrices K1 and K2 from
the corresponding kernel functions. These are symmetric, positive semi-definite matrices.
Then,

f ′Kf =
∑
ij

fiK(xi, xj)fj (11)

=
∑
ij

fi(K1)ij(K2)ijfj (12)

=
∑
ij

(K1)ij(fi(K2)ijfj) (13)

=
∑
ij

(K1)ij(K3)ij (14)

= trace(K1K
′
3) (15)

≥ 0 (16)

where we have defined the matrix (K3)ij = fi(K2)ijfj . This corresponds to a kernel function
of the type described in (1-2) and is hence positive semi-definite. The product matrix
K1K

′
3 is then positive semi-definite (has non-negative eigenvalues) so that the trace (sum

of eigenvalues) is non-negative.

Alternate Approach. We may factor K2 = R′R where R = (rij) is a real-valued matrix.1

Then,

f ′Kf =
∑
ij

fiK(xi, xj)fj (17)

=
∑
ij

fiK1(xi, xj)K2(xi, xj)fj (18)

=
∑
ij

fiK1(xi, xj)

(∑
k

rkirkj

)
fj (19)

=
∑
k

∑
ij

(rkifi)K1(xi, xj)(rkjfj) (20)

=
∑
k

g′
kK1gk (21)

≥ 0 (22)

where we have defined vectors gk for k = 1, . . . , n with entries gki = rkifi for i = 1, . . . , n.
The last line then follows as g′K1g ≥ 0 for all g since K1 is positive semi-definite. Hence,
K is a kernel function.

(1-4) (20pts) Here is our code for building a support vector machine:
1For instance, consider either (i) the Cholesky factorization, (ii) the symmetric square-root or (iii) the

eigendecomposition (which, for a symmetric positive semi-definite matrices gives non-negative eigenvalues
and real eigenvectors). The existence of each of these factorizations is gauranteed for a positive semi-definite
matrix.

2

function svm = svm_build(data,kernel)

y = data.y;
X = data.X;
n = length(y);

% evaluate the kernel matrix
K = feval(kernel,X,X); % n x n positive semi-definite matrix
K = (K+K’)/2; % should be symmetric. if not, may replace by equiv symm kernel.

% solve dual problem...
D = diag(y); % diagonal matrix with D(i,i) = y(i)
H = D*K*D; % H(i,j) = y(i)*K(i,j)*y(j)
% note, H & K are similar matrices => H is positive semi-definite.
f = -ones(n,1);
A = [];
b = [];
Aeq = y’;
beq = 0.0;
LB = zeros(n,1);
UB = Inf * ones(n,1);
X0 = zeros(n,1);

warning off; % suppress ’Warning: Larg-scale method ...’
alpha = quadprog(H+1e-10*eye(n),f,A,b,Aeq,beq,LB,UB,X0)
warning on;

% essentially, we have added a (weak) regularization term to
% the dual problem favoring minimum-norm alpha when solution
% is underdetermined. this is also important numerically
% as any round-off error in computation of H could potentially
% cause dual problem to become ill-posed (minimizer at infinity).
% regularization term forces Hessian to be positive definite.

% select support vectors.
S = find(alpha > eps);
NS = length(S);
beta = alpha(S).*y(S);
XS = X(S,:);

% also, calculate/estimate w0 (bias parameter) ...
w0 = mean(y(S) - sum(diag(beta)*K(S,S))’);

% store the results
svm.kernel = kernel;

3

svm.NS = NS;
svm.w0 = w0;
svm.beta = beta;
svm.XS = XS;

(1-5) (5pts) Here is our code for computing the discriminant function:

function f = svm_discrim_func(Xnew,svm)
f = (sum(diag(svm.beta)*feval(svm.kernel,svm.XS,Xnew)) + svm.w0)’;

(1-6) (5pts) Here is our code to run experiment for just one of the kernel functions:

function [] = svm_test(kernel,train_data,test_data)

figure;
svm = svm_build(train_data,kernel);
svm_plot(train_data,svm);

% verify for training data
y_est = sign(svm_discrim_func(train_data.X,svm));
errors = find(y_est ~= train_data.y);

if (errors)
fprintf(’WARNING: %d training examples were misclassified!!!\n’,length(errors));
hold on;
plot(train_data.X(errors,1),train_data.X(errors,2),’rx’);
hold off;

end

% evaluate against test data
y_est = sign(svm_discrim_func(test_data.X,svm));
errors = find(y_est ~= test_data.y);

fprintf(’TEST RESULTS: %g of test examples were misclassified.\n’,...
length(errors)/length(test_data.y));
hold on;
plot(test_data.X(errors,1),test_data.X(errors,2),’k.’);
hold off;

The script hw3 prob.m runs the preceeding experiment for each of the four kernel functions.

figure(1);
svm_plot_data(svm_train_data);
title(’training data’);
print -depsc hw3_prob1_fig1.eps;

4

figure(2);
svm_plot_data(svm_test_data);
title(’test data’);
print -depsc hw3_prob1_fig2.eps;

svm_test(@K1,svm_train_data,svm_test_data);
title(’K1’); print -depsc hw3_prob1_fig3.eps;

svm_test(@K2,svm_train_data,svm_test_data);
title(’K2’); print -depsc hw3_prob1_fig4.eps;

svm_test(@K3,svm_train_data,svm_test_data);
title(’K3’);print -depsc hw3_prob1_fig5.eps;

svm_test(@Kr,svm_train_data,svm_test_data);
title(’Kr’);print -depsc hw3_prob1_fig6.eps;

The plots generated by this script are reproduced below.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

training data

5

−5 −4 −3 −2 −1 0 1 2 3 4 5

−4

−3

−2

−1

0

1

2

3

4
test data

−3 −2 −1 0 1 2 3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

K1

−3 −2 −1 0 1 2 3 4 5

−2

−1

0

1

2

3

4
K2

6

−3 −2 −1 0 1 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

K3

−3 −2 −1 0 1 2 3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Kr

(1-7) (5pts) The test errors are as follows (respectively for K1, K2, K3 and Kr);

TEST RESULTS: 0.153 of test examples were misclassified.
TEST RESULTS: 0.1795 of test examples were misclassified.
TEST RESULTS: 0.196 of test examples were misclassified.
TEST RESULTS: 0.186 of test examples were misclassified.

Your results may vary slightly depending on how you regularized the dual problem. For this
data set, the simplest linear SVM actually did the best. We would have expected this as the
underlying data appears to be Gaussian distributed with equal covariances (approximately
the identity matrix) but unequal means. Then, the optimal classifier is actually given by a
linear decision boundary.

7

Problem 2: Regularized Parameter Estimation

(2-1) (5pts) The log-likelihood of the data xn = (x1, . . . , xn) as a function of the parameters
θ = (θ1, . . . , θn) is

l(θ) = log P (xn|θ) (23)

= log
n∏

i=1

P (xi|θ) (24)

=
n∑

i=1

log P (xi|θ) (25)

=
M∑

x=1

n(x) log θx (26)

where P (x|θ) = θx and n(x) is the number of times x occurs in xn. We wish to maximize
l(θ) w.r.t the parameters θ subject to the constraint

∑
x θx = 1.2 We solve this constrained

minimization problem by the method of Lagrange multipliers.

First, we define the Lagrangian objective function where the constraint is introduced as an
extra penalty term scaled by a Lagrange multiplier µ.

L(θ, µ) = l(θ) + µ(1−
∑
x

θx) (27)

= µ +
∑
x

(n(x) log θx − µθx) (28)

Next, we minimize the Lagrangian L(θ, µ) with respect to the parameters θ thereby solving
for the optimal parameters θ̂(µ) as function of the multiplier µ.

∂L

∂θx
=

∂

∂θx
(n(x) log θx − µθx) (29)

=
n(x)
θx

− µ (30)

Setting each of these derivatives to zero and solving for the parameters gives

θ̂x(µ) =
n(x)

µ
(31)

for x = 1, . . . ,M . Finally, we solve for the Lagrange multiplier requiring that ∂L
∂µ = 1 −∑

x θx = 0 (i.e., that the constraint is satisfied). Note that
∑

x θ̂x(µ) = 1
µ

∑
x n(x). Setting

this to one and solving for µ gives µ =
∑

x n(x) = n. Hence, the maximum-likelihood
parameters are

θ̂(ML)
x (xn) =

n(x)
n

(32)

2Really, we should also specify inequality constraints 0 < θx < 1 for x = 1, . . . , M . But, we would
then find that these constraints are inactive at the optimum (i.e., are automatically satisfied) and so will
omit these from the discussion. Alternatively, we could also reparameterize the problem in terms of log-
probability parameters, setting P (x|θ) = exp{θx}, and then maximize

∑
x

n(x)θx subject to the constraint∑
x

exp{θx} = 1.

8

as claimed.

(2-2) (10pts) We wish to maximize

f(θ) = log p(θ|β) (33)
= − log Z(β) +

∑
x

βx log θx (34)

w.r.t. parameters θ subject to constraint
∑

x θx = 1. Use method of Lagrange multipliers.

L(θ, µ) = f(θ) + µ

(
1−

∑
x

θx

)
(35)

= − log Z(β) + µ +
∑
x

(βx log θx − µθx) (36)

Minimize w.r.t. θ for fixed µ,
∂L

∂θx
=

βx

θx
− µ = 0 (37)

This gives the minimizer of the Lagrangian as a function of µ.

θ̂x(β, µ) =
βx

µ
(38)

Then, requiring normalization, we have µ =
∑

x βx so that

θ̂(prior)
x (β) =

βx∑
k βk

(39)

(2-3) (10pts) We wish to maximize the penalized log-likelihood

J(θ) = log P (xn|θ) + log p(θ|β) (40)
= − log Z(β) +

∑
x

{(n(x) + βx) log θx} (41)

w.r.t θ subject to the constraint
∑

x θx = 1. We minimize the Lagrangian

L(θ, µ) = J(θ) + µ

(
1−

∑
x

θx

)
(42)

= µ− log Z(β) +
∑
x

{(n(x) + βx) log θx − µθx} (43)

w.r.t θ.
∂L

∂θx
=

n(x) + βx

θx
− µ = 0 (44)

Solving for θx gives

θ̂x(xn, β;µ) =
n(x) + βx

µ
(45)

Requiring normalization gives µ =
∑

x(n(x) + βx) so that the MAP estimate is

θ̂(MAP)
x (xn, β) =

n(x) + βx∑
k n(k) + βk

(46)

9

(2-4) (10pts) Let N =
∑

x βx. Note that
∑

x(n(x) + βx) = n + N . Then,

θ̂(MAP)
x (xn, β) =

n(x) + βx

n + N
(47)

=
1

n + N

{
nθ̂(ML)

x (xn) + Nθ̂(prior)
x (β)

}
(48)

=
(

n

n + N

)
θ̂(ML)
x (xn) +

(
N

n + N

)
θ̂(prior)
x (β) (49)

= (1− λ)θ̂(ML)
x (xn) + λθ̂(prior)

x (β) (50)

where

λ =
N

n + N
(51)

1− λ =
n

n + N
(52)

The formula holds for each x ∈ {1, . . . ,M} and λ does not depend on x.

(2-5) (10pts) Our script for this problem is reproduced below:

% ’hw3_prob2.m’
% 6.867 Machine Learning - Fall 2003

clear;
close all;
load docdata.mat;

theta_prior = full(prior_theta([xtrain; xtest]));
theta_ml = full(ml_theta(xtrain,ytrain));

lambda = [0.0:0.001:0.999];
error = zeros(size(lambda));
theta0 = theta_ml;
theta1 = [theta_prior; theta_prior];
y_est = zeros(size(ytest));

for k = 1:length(lambda)

theta_map = lambda(k) * theta1 + (1.0-lambda(k)) * theta0;

llr = log_likel_ratio(theta_map,xtest);
I1 = (llr >= 0.0);
y_est(I1) = 1;
y_est(~I1) = 2;

error(k) = mean(y_est ~= ytest);

10

end

plot(lambda,error,’k-’);
title(’Test Error as function of lambda’);
xlabel(’lambda’);
ylabel(’fraction misclassified’);
print -depsc hw3_prob2_fig1.eps;
refresh;

Here is the plot of the classification error as a function of λ.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.22

0.24

0.26

0.28

0.3

0.32
Test Error as function of lambda

lambda

fra
ct

io
n

m
is

cl
as

si
fie

d

Note that best values of λ occur near one (approx λ = 0.95) which places most of the
weight on the prior parameters estimate. We would expect this because we are estimating
so many parameters based on relatively little data. This scenario emphasises the need for
regularization.

(2-6) (5pts) We could choose λ based upon just the training data by selecting the value
of λ which minimizes the cross-validation error.

11

