
6.867 Machine Learning

Problem Set 3

Due Monday, October 27

Problem 1: Support Vector Machines

References: Lectures 7 & 8.

This problem introduces you to the support vector machine (SVM) and asks you to con-
struct and test SVMs for a given data set. We have provided most of the code with some
gaps for you to fill.

Suppose now that we have a labeled training set, {(x1, y1), . . . , (xn, yn)}, where each xi

is an m-dimensional vector. The possible labels are y = −1 and y = +1. We consider
classifiers of the following form:

ŷ(x; w0,w) = sign(w0 + w′φ(x)) (1)

where φ : Rm → RM maps each m-dimensional example x to an M -dimensional “feature
vector” φ(x).

To design an SVM classifier, we will require here that the given examples are seperable w.r.t.
the chosen features, i.e. there exists atleast one setting of (w0,w) such that this decision
rule will correctly classify all of the given examples. The paramaters (w0,w) ∈ RM+1 are
optimized to “best” separate the two classes of examples, i.e., optimized so as to maximize
the “margin” (the distance from the decision boundary to the closest training). We can
formally solve this problem as a contrained optimization problem where we minimize the
regularization penalty function 1

2
‖w‖2 subject to the constraints that each example is

classified correctly.

minimize 1
2

∑
k>0 w2

k (2)

s.t. yi(w0 + w′φ(xi))− 1 ≥ 0 ∀i (3)

Essentially, we require that all the +1 labeled examples (their feature vectors) live in the
half space H = {φ : (w0 + w′φ) ≥ 1}, while −1 labeled examples fall into the opposite,
gap separated, half space H = {φ : (w0 + w′φ) ≤ −1}. The hyperplane in the middle
of the gap, H0 = {φ : w0 + w′φ = 0}, then determines the maximum margin seperating
hyperplane in RM .
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The problem with the above “primal” formulation is that we have to explicitly represent the
feature vectors φ(x) that may be quite high dimensional vectors. As shown in the lecture,
we can derive the following “dual” optimization problem that only involves inner products
between the feature vectors; inner products are real numbers that can be typically evaluated
without ever explicitly constructing the feature vectors. Specifically, the dual optimization
problem takes the following form

maximize J(α) =
∑

i αi − 1
2

∑
i,j αiαjyiyjK(xi,xj) (4)

s.t. αi ≥ 0 ∀i (5)∑
i αiyi = 0 (6)

where {αi} are the Lagrange multipliers associated to the inequality constraints and K(xi,xj) =
φ(xi)

′φ(xj) is the kernel function.

The solution to the original problem is then recovered as

ŵ = arg min
w∈RM

{
f(w)−

∑
i

α̂iyiw
′φ(xi)

}
(7)

=
∑

i

α̂iyiφ(xi) (8)

where α̂i are the optimal multipliers which solve the dual problem. The value of the offset
(bias) parameter w0 needs to be recovered separately as discussed below.

The dual problem exposes an important feature of SVM’s. Typically, only a few of the
constraints are active at the optimum so that the solution is characterized by just those
critical examples corresponding to active contraints. Let S = {i|α̂i > 0} denote the set of
active constraints. The optimal parameters ŵ are a linear combination (in feature space)
of these critical examples (called support vectors):

ŵ =
∑
i∈S

β̂iφ(xi) (9)

where β̂i = yiα̂i.

We can recover ŵ0 based on the active constraints by observing that for each active con-
straint i ∈ S, we must have

yi(ŵ0 + ŵ′φ(xi)) = yi

ŵ0 +
∑
j∈S

β̂jφ(xj)
′φ(xi)

 = yi

ŵ0 +
∑
j∈S

β̂jK(xj,xi)

 = 1 (10)

or (by multiplying both sides by yi), ŵ0 +
∑

j∈S β̂jK(xj,xi) = yi. In other words, the
margin constraint is satisfied with equality. This is because any active constraint wouldn’t
be satisfied without a non-zero Lagrange multiplier; the Lagrange multiplier only changes
the solution to the extent that the constraint is just barely satisfied, i.e., the inequality
constraint is satisfied with equality.
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Finally, in the resulting decision rule

ŷ(x; ŵ0, β̂) = sign

(
ŵ0 +

∑
i∈S

β̂iK(xi,x)

)
(11)

we compare the new example x to each of the support vectors (but not other training
examples).

The problem:

Let’s start by figuring out how to construct a valid kernel function. What is a valid kernel
function? For us to be able to interpret the kernel as an inner product between some feature
vectors, the matrix K = (Kij) defined by Kij = K(xi,xj), has to be positive semi-definite
for any finite set of examples {x1, . . . ,xn}.1 For example, this is the case for the simple
linear kernel K(xi,xj) = x′

ixj since

K = X′X (12)

where X = [x1, . . . ,xn]′.

(1-1) (5pts) Show that the sum of any two kernels, K(xi,xj) = K1(xi,xj) + K2(xi,xj), is
a valid kernel in the sense discussed above. In other words, show that for any finite
training set, Kij defines a positive semi-definite matrix.

(1-2) (5pts) Show that f(xi)K(xi,xj)f(xj) is a valid kernel for any real valued function
f(x) and kernel K(xi,xj).

(1-3) (5pts) Show that the elementwise product of any two kernels K1 and K2,

K(xi,xj) = K1(xi,xj)K2(xi,xj), (13)

is a valid kernel. (Hints. Use the fact that ξiK(xi,xj)ξj, for any ξi, i = 1, . . . , n can
be interpreted as a kernel of the previous type; the fact that a matrix product AB is
semi-definite for any semi-definite A and B; and the fact that trace(AB) =

∑
ij AijBij

(for symmetric matrices) is also a sum of eigenvalues of the square matrix product
AB. Alternate Approach. Use the fact the any positive semi-definite matrix K may
be factored as K = R′R with R a real-valued n× n matrix.2)

As an example use of these rules, let’s figure out why a radial basis kernel

K(xi,xj) = exp{−1

2
‖xi − xj‖2} (14)

1By definition, the matrix K is positive semi-definite if and only if f ′Kf ≥ 0 for all f ∈ Rn.
2For instance, let R′ = SD1/2 where K = SDS′ is the eigendecomposition of K. Because K is positive

semi-definite, the eigenvalues dii = λi are non-negative and the eigenvectors (columns of S) are real-valued
so that R is a real-valued matrix.
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is a valid kernel.

exp{−1

2
‖xi − xj‖2} = exp{−1

2
x′

ixi + x′
ixj −

1

2
x′

jxj} (15)

=

f(xi)︷ ︸︸ ︷
exp{−1

2
x′

ixi} · exp{x′
ixj} ·

f(xj)︷ ︸︸ ︷
exp{−1

2
x′

jxj} (16)

Here exp{x′
ixj} is a sum of simple products x′

ixj and therefore a kernel based on the first
and the third rules; the second rule allows us to incorporate f(xi) and f(xj).

We have provided you with four matlab functions K1 (linear kernel) ,K2 (2nd order poly-
nomial kernel), K3 (3rd order polynomial kernel), and Kr (radial basis kernel) which use
the above rules to generate the kernel matrices. Each of these functions takes as inputs
two sets of examples (stored as row vectors) and returns the corresponding kernel matrix.
So, for example, K1(X1,X2) returns a matrix of simple inner products between the rows of
matrices X1 and X2. The number of rows in the returned matrix corresponds to the number
of rows in X1, and the number of columns is the number of rows in X2.

We are now ready to generate MATLAB code to build and execute SVMs. You will need to
write bits and pieces of the code that we have already mostly written. You can, of course,
write your own svm code if you like. You will test your SVM code using data provided in
svm data.mat which contains two structures svm train data and svm test data. Load
this data into MATLAB with the load command. Each structure contains an n×m matrix
X containing all examples (m = 2) (as row vectors) and the corresponding labels stored in
an n× 1 column vector y. You may display either data set using the provided subroutine
svm plot data.

(1-4) (20pts) You can solve the SVM optimization problem (obtain α’s) by using MAT-
LAB’s standard quadratic programming routine x=quadprog(H,f,A,b). This routine
solves the following generic quadratic programming problem:

minimize 1
2
x′Hx + f ′x (17)

s.t. Ax ≤ b (18)

(you are welcome to use other variations of quadprog(...) if you like; some versions
permit explicit equality constraints, upper and lower bounds, etc.). For this routine
to be useful you need to set up the matrices H, A, and vectors f and b so that the
solution x will be the α’s that we are after. Complete these steps in subroutine SVM

= svm build(data,kernel), the skeleton of which we have provided. Your function
takes a MATLAB function handle to indicate which kernel function to use (e.g.,
svm build(data,@K1)). You then call the kernel function using feval (i.e., K =

feval(kernel,X,X)) to get the kernel matrix. Your procedure should call quadprog
to solve the dual problem, which requires you to set up the appropriate matrices
described above. The vector β is defined in the skeleton code as before, β̂i = yiα̂i,
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but here only for support vectors. You also need to compute the offset parameter w0
from the solution. We have already provided means for storing the necessary values.
Run and debug your routine (using the training data) before you proceed.

(1-5) (5pts) Write a MATLAB subroutine function f = svm discrim func(X,SVM) to
evaluate the discriminant function f(x; ŵ0, β̂) = ŵ0 +

∑
i∈S β̂iK(xi,x) for each input

in X given the specifications in SVM. (we have provided you with a skeleton). You
will need this function to classify the test data and also to run our display function
svm plot which will plot the decision boundary of your SVM.

(1-6) (5pts) For each of the kernels you implemented in part 1, build a SVM based upon
the training data we have provided. First, check to verify that your SVM does indeed
correctly classify all of these training examples (otherwise you have a bug somewhere).
Once everything checks out, record the specifications for each of your SVMs. Use the
procedure svm plot to display the training data and overlay a plot of the decision
boundary and support vectors for each of your SVMs. Submit one plot for each of
your kernel functions.

(1-7) (5pts) Apply each of the SVMs you have constructed to the test data. Report the
number of misclassified examples for each SVM. Which one did the best?
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Problem 2: Regularized Parameter Estimation

Thus far, we have focused on the maximum likelihood approach to parameter estimation.
Given a parameterized family of probability models P (x|θ) and a data set xn = (x1, . . . , xn)
comprised of independent samples xi ∼ P (·|θ), we fit the model to the data so as to max-
imize the likelihood (or log-likelihood) of all samples. This gives the maximum-likelihood
(ML) estimate of the parameters:

θ̂ML = arg max
θ

log P (xn|θ) (19)

This approach does not express any prior bias as to which values of θ we should prefer
when data is limited.

In the sequel, we consider a regularized approach to parameter estimation. Here, we specify
a prior model p(θ) over the set of allowed parameter settings Θ. Given a prior model, we
may then employ Bayes rule to compute the posterior probability of θ given the observa-
tions:

p(θ|xn) =
P (xn|θ)p(θ)

P (xn)
(20)

where
P (xn) =

∫
Θ

P (xn|θ)p(θ)dθ (21)

Then, we fit the model to the data by maximizing the (log-) probability of θ conditioned
on the data,

θ̂MAP = arg max
θ

log p(θ|xn) (22)

= arg max
θ
{log P (xn|θ) + log p(θ)− log P (xn)} (23)

= arg max
θ
{log P (xn|θ) + log p(θ)} (24)

Note that we have dropped the − log P (xn) term as this does not depend upon θ and
does not affect the parameter estimate. Hence, we do not need to explicitly evaluate
the integral in (21). This may be viewed as a penalized log-likelihood criterion, i.e. we
maximize J(θ) = log p(xn; θ)−f(θ) subject to the regularization penalty f(θ) = − log p(θ).
The parameter estimate θ̂MAP is known as the maximum a posterior (MAP) estimate.

In this problem you will construct MAP estimates for the probabilities of a (potentially
biased) M -sided die, i.e. x ∈ {1, . . . ,M}. We consider the fully-parameterized representa-
tion P (x = k) = θk, where 0 ≤ θk ≤ 1 for k = 1, . . . ,M and

∑
k θk = 1. This simple model

has many relevant applications.

Consider a document classification task, where we need class-conditional distributions over
words in the documents. Suppose we only consider words 1, . . . ,M (for relatively large M).
Each word in the document is assumed to have been drawn at random from the distribution
P (x = k|y, θ) = θk|y, where

∑M
k=1 θk|y = 1 for each class y. Thus the selection of words

according to the distribution θ·|y can be interpreted as a (biased) M -sided die.
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Now, the probability of generating all words x1, . . . , xn in a document of length n would be

P (xn|y, θ) =
n∏

i=1

P (xi|y, θ) =
n∏

i=1

θxi|y (25)

assuming the document belongs to class y. Note that this model cares about how many
times each word occurs in the document. It is a valid probability model over the set of
words in the document.

Since we typically have very few documents per class, it is important to reqularize the
parameters, i.e., provide a meaningful prior answer to the class conditional distributions.

Let’s start by briefly revisiting ML estimation of the (biased) M -sided die. Similarly to
calculations you have already performed, the ML estimate of the parameter θ from n
samples is given by the empirical distribution:

θ̂x =
n(x)

n
= P̂ (x) (empirical distribution) (26)

where n(x) is the number of times value x occured in n samples. n(x) is also a sufficient
statistic for θx as it is all we need to know from the available n samples in order to estimate
θx.

(2-1) (5pts) Derive the above ML estimate by maximizing the log-likelihood directly with
respect to θ1, . . . , θM , using a Lagrange multiplier to enforce the normalization con-
straint

∑
k θk = 1.

Next, we consider MAP estimation. To do so, we must introduce a prior distribution over
the θ’s. A natural choice for this problem is the Dirichlet distribution

p(θ; β) =
1

Z(β)

M∏
k=1

θβk
k (27)

with non-negative hyperparameters β = (βk > 0, k = 1, . . . ,M) and where Z(β) is just a
normalization constant (which you do not need to evaluate in this problem).

(2-2) (10pts) First, consider this prior model (ignoring the data for the moment). What
value of θ is most likely under this prior model? That is, compute

θ̂(β) = arg max
θ

log p(θ; β) (28)

This is the a priori estimate of θ before observing any data.

(2-3) (10pts) Next, given the data xn, compute the MAP estimate of θ as a function of the
hyperparameters β and the data xn (use the sufficient statistics n(x)):

θ̂MAP (xn; β) = arg max
θ

log p(θ|xn, β) (29)

7



Note that you do not need to calculate Z(β) in order to perform this optimization;
you can optimize the penalized log-likelihood J(θ) = log P (xn|θ) − f(θ; β) with a
simple penalty function f(θ; β), as discussed above. Thus we do not have to evaluate
the full posterior distribution p(θ|xn, β) in order to perform the regularization.

(2-4) (10pts) Show that your MAP estimate may be expressed as a convex combination of
the a priori estimate θ̂(β) and the ML estimate θ̂ML(xn). The means that we may
write

θ̂MAP (xn; β) = (1− λ)θ̂ML(xn) + λθ̂(β) (30)

for some λ ∈ [0, 1]. Note that the same convex combination holds for each component
θx. Determine λ as a function of the number of samples n and the hyperparameters
β.

As this shows, one way of thinking of a prior distribution is that is it is a proxy for any
data we have observed in the past but no longer have available. The normalized parameters
β̂i = βi/N , where N =

∑
i βi, express our prior estimate of the parameters θ while the

normalization parameter N expresses how strongly we believe in that prior estimate.

Let’s briefly explore the use of this prior in a document classification task. Our data is
slightly inappropriate given the model but we will use it regardless. The data docdata.mat

provides matrices xtrain, xtest, and label vectors ytrain and ytest. Each document is
represented as a binary (row) vector, where each component indicates whether a specific
word (out of 600 words listed in words.txt) appears in the document or not. To use our
model appropriately we would need to know how many times each word occured in the
document, not just whether they did or not. This information is not available in the data,
however. We will use the data regardless, and stubbornly interpret the binary numbers as
word counts. The two classes of documents, y = 1 and y = 2, correspond to email messages
posted to online discussion boards, one for users of MS Windows and another for users of
X Windows. We want a classifier that would label a new message as belonging to one of
the groups.

(2-5) (10pts) Generate the prior parameter estimate from both training and test documents
using theta prior = prior theta([xtrain;xtest]). prior theta corrsponds to
θ̂(β) discussed earlier, and is the same for both classes. For this estimation to be
relevant in practice we would need to have access to the test documents. Note that
for classification it is fine for us to use the words in the test documents so long as we
do not see the labels.

The ML estimate θ̂ can be found with theta hat = ml theta(xtrain,ytrain).
Note that theta hat has two rows of parameters, one corresponding to each class.

Plot the test errors as a function of different convex combinations of estimates, spec-
ified by parameter λ discussed earlier. Use lambda = [0:0.1:0.9]. You can eval-
uate the discriminant function corresponding to the simple two class model using
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log likel ratio(theta,xtest). For each row xn in xtest, the function returns
log P (xn|θ1, y = 1)− log P (xn|θ2, y = 2).

Can you explain the resulting curve?

(2-6) (5pts) How would you set λ in practice? We would need to fix the value of this
parameter before seeing any test labels.
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