
6.867 Machine Learning

Solutions for Problem Set 4

Wednesday, November 12

Problem 1: Regularized Least-Squares Feature Selection

(1-1) (10pts) First, let’s rewrite the least-squares error metric J(w; 0) as a function of the
k-th parameter wk (viewing remaining parameters w−k as fixed constants).

J(wk; 0) =
1

2n

∑
i

(yi − w′φ(xi))2 (1)

=
1

2n

∑
i

(yi − w′
−kφ−k(xi) − wkφk(xi))2 (2)

=
1

2n

∑
i

{
φ2

k(xi)w2
k + 2φk(xi)(yi − w′

−kφ−k(xi))wk + (yi − w′
−kφ−k(xi))2

}
(3)

=
1
2
akw

2
k − ckwk + dk (4)

where

ak =
1
n

∑
i

φ2
k(xi) (5)

ck =
1
n

∑
i

φk(xi)(yi − w′
−kφ−k(xi)) (6)

dk =
1

2n

∑
i

(yi − w′
−kφ−k(xi))2 (7)

which is a quadratic function of wk. Computing the partial derivative w.r.t. wk we obtain
a linear function of wk.

∂J(w; 0)
∂wk

= akwk − ck (8)

Then, taking the subdifferential of J(w;λ) w.r.t. wk, we obtain

∂wk
J(w;λ) = ∂wk

{J(w; 0) + λ‖w‖1} (9)
= ∂wk

J(w; 0) + λ∂wk
‖w‖1 (10)

=
∂J(w; 0)
∂wk

+ λ∂wk
|wk| (11)

= (akwk − ck) + λ∂wk
|wk| (12)
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The subdifferential of the absolute value function is

∂wk
|wk| =




{−1}, wk < 0
[−1,+1], wk = 0
{+1}, wk > 0

(13)

Hence, scaling each element of the subdifferential by λ and adding ∂J(w;0)
∂wk

we have

∂wk
J(w;λ) =




{(akwk − ck) − λ}, wk < 0
[−ck − λ,−ck + λ], wk = 0
{(akwk − ck) + λ}, wk > 0

(14)

as was to be shown.

Interpretation of ck: Essentially, ck measures the sample correlation between the k-th
feature φk(x) and the prediction error e−k = y−w′

−kφ−k(x) based upon the other features.
If this were zero, then feature k is orthogonal to the prediction error and we couldn’t reduce
the prediction error by including φk in our linear predictions. Hence, the magnitude of ck
is an indication of how relevant feature φk is for predicting y (relative to the other features
and corresponding parameter settings).

(1-2) (10pts) Note that the subdifferential ∂wk
J(w;λ) is a monotonically increasing, piece-

wise linear function of wk with slope ak > 0 and a ”jump” of +2λ at wk = 0. The value
of ck (relative to λ) controls where the subdifferential ”crosses” the wk-axis (i.e. contains
a zero). This zero-intercept ŵk is precisely the global minimum we seek satisfying the op-
timality condition 0 ∈ ∂wk

J(ŵk;λ). See Figure 1 for illustrative plots of ∂wk
J(wk;λ) for

each of the three cases discussed below:

(a) If ck < −λ, then −ck − λ > 0 so that the zero-intercept is less than zero (see Fig.
1-a). Hence, we solve akwk − (ck + λ) = 0 for the global minimizer:

ŵk =
ck + λ
ak

< 0 (15)

(b) If ck ∈ [−λ,+λ], then −λ < ck < +λ, or −ck − λ < 0 < −ck + λ, or 0 ∈ [−ck −
λ,−ck + λ] = ∂wk

J(0;λ) (also see Fig. 1-b). Hence, the global minimum occurs at:

ŵk = 0 (16)

(c) If ck > +λ, then −ck + λ < 0 so that the zero-intercept is greater than zero (see Fig.
1-c). Hence, we solve akwk − (ck − λ) = 0 for the global minimizer:

ŵk =
ck − λ
ak

> 0 (17)

Then, putting these results together, ŵk is a continuous, monotonically increasing, piece-
wise linear function of ck:

ŵk(ck) =




(ck + λ)/ak, ck < −λ
0, ck ∈ [−λ,+λ]
(ck − λ)/ak, ck > +λ

(18)
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Figure 1: Plots of ∂J(wk;λ) vs. wk when ck < −λ (top left), −λ < ck < +λ (top right),
ck > +λ (bottom left). Plot of ŵk vs. ck (bottom right).
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An illustrative plot of wk vs. ck is shown in Figure 1.

Interpretation of λ: The regularization parameter λ acts as a cut-off threshold relative to
the coefficient ck which, as discussed previously, indicates how important feature φk is for
performing linear prediction of y. If |ck| < λ, then feature φk is deemed irrelevant (or nearly
so) and is hence omitted from our regularized predictor by setting wk to zero. (this is the
answer we were looking for)

Moreover, when |ck| > λ we do not actually set wk to the (unregularized) least-squares
value ck/ak, but rather bias the estimate towards zero by an amount λ/ak. Hence, λ also
controls by how much we ”underestimate” the remaining (non-zero) parameters.

(1-3) (10pts) The code you need to add to reg least sq.m is given below.

To compute ck:

w_not_k = w;
w_not_k(k) = 0.0;
e_not_k = y - X * w_not_k; % prediction error w/o feature k
c_k = X(:,k)’*e_diff_k/n; % inner product of feature k w/ prediction error

To set ŵk:

if (c_k < -lambda)
w_hat_k = (c_k + lambda)/a(k);

elseif (c_k > lambda)
w_hat_k = (c_k - lambda)/a(k);

else
w_hat_k = 0.0; % l1-regularization forces wieghts of less informative features to zero

end

(1-4) (10pts) The code you needed to modify in hw4 prob1.m is shown below (compute
training error, l1-norm, penalized objective and training error):

% generate additional plots requested in the problem...
l = length(Lambda);
D = zeros(l,5);
for k = 1:l

w = W(:,k);

% half avg. squared training error
D(k,1) = 0.5 * mean((train.y - train.X * w).^2);

% l1 regularization penalty
D(k,2) = sum(abs(w));

% objective
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D(k,3) = D(k,1) + Lambda(k) * D(k,2);

% test error
D(k,4) = 0.5 * mean((test.y - test.X * w).^2);

% l0 norm
D(k,5) = length(find(w));

end

The requested plots are shown in Figure 2.

Observations;

• As we increase λ, more weight is placed keeping the ‖w‖1 small, less weight is placed
on minimizing the mean-squared error. Consequently, the training error is monoton-
ically decreasing while the regularization penalty is monotonically decreasing.

• The minimized objective function, combining the mean-squared error and λ times the
penalty, is apparently a smooth, concave, monotonically increasing function of λ (in
fact, this follows as this is the ”dual function” of a constrained optimization function).
Note that this function can’t be used to select preferable value of λ. J(w;λ) is only
meant for comparing different values of w for a given λ.

• The test error, on the other hand, tends to exhibit a minimum for a certain critical
value of λ. The location of this minima, for this data set atleast, appears to approach
zero as we increase the size of the training set. We would expect this, i.e. that the
more training data we have, the less regularization we should use.

• In practice, we could select the value of λ by computing the leave-one-out cross
validation metric for all λ and seeking the value of λ which minimizes this estimate
of generalization error. This should exhibit similar behavior as we see here for the
test error.

• Overall, increasing λ drives parameters wk to zero. The larger we set λ, the more
parameters are forced to zero so that the l0 norm tends to decrease with λ. This is
in contrast to using l2 regularization which also forces parameters towards zero, but
only causes parameters to approach zero asympototically rather then suddenly as we
observe here.

• It is also interesting to note that, while the overall trend is of decreasing parameter
values as we increase λ, in some cases a few of the parameters can actually increase
temporarily as we increase λ but eventually begin to decrease. This, apparently, has
to do with the interaction of the features (the importance of each feature is relative
to the other feature present and the weight placed on those other features).
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Figure 2: Results for 3 training sets: small (1st column), medium (2nd column) and large
(3rd column). Plots of wk(λ) vs. λ for all k (1st row), training error vs. λ (2nd row), l1
norm vs. λ (3rd row), minimized objective vs. λ (4th row), test error vs. λ (5th row), l0
norm vs. λ (6th row).
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Problem 2: Boosting

(2-1) (10pts) First, we show that the minimization in Step 2 of the general algorithm (LHS
below), with Loss(z) = e−z, is the same as the minimization performed by AdaBoost (RHS
below), e.g. that

arg min
α

∑
i

Loss
(
yihk−1(xi) + αyih(xi; θ̂k)

)
= arg min

α

∑
i

W̃
(k−1)
i exp

{
−αyih(xi; θ̂k

}
(19)

with (from AdaBoost)
W̃

(k−1)
i = c · exp{−yihk−1(xi)} (20)

where c is a normalization constant (weights sum to 1). Evaluating the objective in LHS
gives;∑

i

Loss
(
yihk−1(xi) + αyih(xi; θ̂k)

)
=

∑
i

exp{−yihk−1(xi)} exp{−αyih(xi; θ̂k)}(21)

=
1
c

∑
i

W̃
(k−1)
i exp

{
−αyih(xi; θ̂k

}
(22)

which is proportional to the objective minimized by AdaBoost so that minimizing value of
α is the same for both algorithms.

Second, we show that the weight assignments in Step 3 of the general algorithm (for stage
k) are the same as in given by AdaBoost (written for stage k − 1 above).

W̃
(k)
i = −c · dL(yihk(xi)) (23)

= c · exp{−yihk(xi)} (24)

which is the same as in AdaBoost.

(2-2) (10pts) With the logistic loss Loss(z) = log(1 + e−z) we have

dL(z) = − e−z

1 + e−z
(25)

The weights are then given by

W̃
(k)
k = c · exp(−yihk(xi)

1 + exp(−yihk(xi))
(26)

with normalization constant

c =

(∑
i

exp(−yihk(xi)
1 + exp(−yihk(xi))

)−1

(27)

(2-3) (10pts) At stage k, α̂ is chosen to minimize J(α, θ̂k), e.g. to solve ∂J(α;θ̂k)
∂α = 0. In

general,

∂J(α; θ̂k)
∂α

=
1
n

∑
i

∂

∂α
L(yihk−1(xi) + αyih(xi; θ̂k)) (28)
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=
1
n

∑
i

dL(yihk−1(xi) + αyih(xi; θ̂k))yih(xi; θ̂k) (29)

∝
∑

i

W̃
(k)
i yih(xi; θ̂k) (30)

so that we must have ∑
i

W̃
(k)
i yih(xi; θ̂k) = 0 (31)

Then, the weighted training error for h(x; θ̂k) (relative to the updated weights W̃ (k)
i deter-

mined by α̂) is

ek =
1
2

{
1 −

∑
i

W̃
(k)
i yih(xi; θ̂k)

}
(32)

=
1
2

(1 − 0) (33)

=
1
2

(34)

(2-4) (5pts) The following excerpt from boost logistic.m computes the weights.

% insert weight update here
W = exp(-H.*y)./(1+exp(-H.*y));
W = W/sum(W);

(2-5) (10pts) See the following script hw4 prob2.m:

clear all;
close all;
data = loaddata;

err = zeros(50,1);
for k = 1:50

% train -- run boosting algorithm for k iterations
model = boost_logistic(data.xtrain,data.ytrain,k);

% test
y_est = sign(eval_boost(model,data.xtest));
err(k) = sum(y_est ~= data.ytest);

end

plot(err,’o-’);
xlabel(’Number test examples misclassified’);
ylabel(’Number of Boosting Iterations’);
refresh;
print -deps boost_plot.eps;
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Figure 3: Plot of number of misclassified test cases (out of 483 cases) vs. number of boosting
iterations.

Problem 3: VC-Dimension

Part I: Linear Classifiers

In this part we consider the set of linear classifiers Hd = {hw : Rd → {−1,+1}|w ∈ Rd}
comprised of classifiers of the form:

hw(x) =

{
+1, w′x > 0
−1, w′x ≤ 0

(35)

(3-1) (10pts) We wish to show the existence of a set of d points x1, . . . ,xd ∈ Rd such
that for any arbitrary choice of labels y1, . . . , yd ∈ {−1,+1} there exists a w ∈ Rd s.t.
hw(xk) = yk for k = 1, . . . , d. Then, by definition, Hd shatters the set X = {x1, . . . ,xd}.

Let’s define the k-th point xk to have all zero entries except for a one in entry k.

xk
i =

{
1, i = k
0, i �= k (36)

Given an arbitrary set of labels Y = (y1, . . . , yd) let’s define the corresponding w by
wk(Y ) = yk. Then,

hw(Y )(x
k) = sign(w′(Y )xk) = sign(xk(Y )) = yk (37)

which is precisely what we wished to show. Hence, we have exhibited a set X with d points
which is shattered by Hd.
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The VC-dimension of Hd is defined as

V C(Hd) = max {|X| : Hd shatters X} (38)

Since our X is shattered by Hd, we must have that V C(Hd) ≥ |X| = d.

(3-2) (10pts) We now wish to show that no set of d+ 1 points can be shattered by Hd.

Proof by contradiction. Suppose there exists such a set X = {x1, . . . ,xd+1} which can be
shattered by Hd. We wish to show that this leads to a logical contradiction.

Without any loss of generality, assume that X does not contain the origin (if it did, it
couldn’t possible be shattered by Hd because any labeling which assigns a y = +1 to the
x = 0 element can’t be produced by the hw decision rule which always decides hw(0) = −1
for any choice of w).

Consider the set X̂ = {0} ∪X. By Radon’s theorem, we can partition X̂ into subsets S1

and S2 s.t. the convex hulls of S1 and S2 intersect (contain a common point). Let S1 be
the set containing x0 = 0. Then, let Ŷ = (y0, y1, . . . , yd+1) be the labeling of these points
where yk = −1 for each point xk ∈ S1 and yk = +1 for each point xk ∈ S2. By assumption,
there exists a w s.t. hw(xk) = yk for k = 0, 1, . . . , d + 1 (since we can shatter X and this
holds by construction for x0). This means that all the points S1 are contained in the open
positive half-space

H+
w = {x|w′x > 0} (39)

while all the points S2 are contained in the closed negative half-space H−
w = R \ H+

w .
Likewise the convex hulls of these two sets are contained by their respective half-spaces
(due to the convexity of half-spaces). However, this contradicts the claim that the convex
hulls of S1 and S2 intersect since any point x in both convex hulls must then lie in both
H+

w and H−
w = R \H+

w which is nonsense (these sets are by definition disjoint).

Hence, there does not exist a set of d+1 points shattered by Hd. Of coarse, this implies that
there does not exist any set of n ≥ d+ 1 points which can be shattered by Hd (otherwise,
any d+ 1 of these points could also be shattered). Consequently, V C(Hd) < d+ 1.

Combining this result with the earlier result from (3-1) gives d ≤ V C(Hd) < d + 1 ⇒
V C(Hd) = d.

(3-3) (5pts) Suppose that there existed n > d points X = (x1, . . . ,xn) such that we could
shatter the set Φ = (φ(x1), . . . , φ(xn)) ⊂ Rd with a decision rule of the form

hα(φ) =

{
+1, α′φ > 0
−1, α′φ ≤ 0

(40)

for some α ∈ Rd. This would contradict the result just shown in (3-2). Hence, there does
not exist such a set and the VC-dimension of the set of these classifiers, based upon features
φ : X → Rd, is at most d.
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Part II: Decision Stumps

In this part, we consider the set of classifiers H on Rd comprised of decision stumps, e.g.
decision rules of the form

hi,a,b(x) =

{
+1, axi − b ≥ 0
−1, axi − b < 0

(41)

where i ∈ {1, ..., d}, a ∈ {−1,+1} and b ∈ R.

(3-4) (5pts) Let X = (x1, . . . ,xn) ⊂ Rd. Show that these n points can be labeled in
at most 2dn different ways using decision stumps. For each choice of i ∈ {1, . . . , d} and
a ∈ {−1,+1}, we can sweep b from −∞ to +∞ to generate (at most) n different labelings
of X. Since there are 2d possible choices of i and a, this generates at most 2dn possible
labelings of X.

(3-5) (5pts) Suppose that the VC-dimension of H is n. This means there exists a set X
comprised of n points which H can shatter. For this set X we can generate any of the 2n

possible +1/-1 labelings of the n points in X. But, by the result of (3-4), we must have
that 2n ≤ 2dn ⇒ n ≤ log2 2dn (this holds for all X having n points including the X that
we can shatter). To use the hint, write this as n− log2 n ≤ 1 + log2 d. For n ≥ 3, we have
that n/2 ≤ n − log2n ≤ 1 + log2 d ⇒ n ≤ 2(1 + log2 d) which bounds the growth of the
VC-dimension n(d) as the dimension of the input space d becomes large.

(3-6) (optional) Solution omitted.

The last part of the problem is concerned with the set of classifiers

Hm =

{
hα(x) = sign

(
m∑

k=1

αkh(x; θk)

)∣∣∣∣∣α ∈ Rm

}
(42)

comprised of decision rules formed by weighted combinations of m decision stumps where
θk are the parameters of the k-th decision stump.

(3-7) (10pts) We compute an upper bound on the number of labelings of n points X =
{x1, . . . ,xn} ⊂ Rd we can generate with the set Hm.

First, observe that choosing the parameters θ1, . . . , θm of the m decisions stumps essen-
tially just allows us to generate some number K of distinct feature specifications Φ =
(φ(x1), . . . , φ(xn)) where each column φ(xk) = (h(xk; θ1), . . . , h(xk; θm))′. As was shown in
(3-4), by varying θk we can generate at most 2dn possible labelings corresponding to row k
of Φ. Since we can choose θk independently for each row, we can generate at most (2dn)m

different +1/-1 matrices Φ. Hence, we can decompose

Hm = ∪K
k=1HΦk (43)

with K ≤ (2dn)m and where HΦk is a linear decision rule of the form described in (3-3).
For each HΦk we have that the VC-dimension is at most m. By the lemma, the number of
possible labelings we can generate with HΦk (by varying α) for n points is bounded above
by (2n/m)m. Hence, we can generate at most K(2n/m)m ≤ (2dn)m(2n/m)m labelings with
the set of classifiers Hm.
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