6.867 Machine Learning

Problem Set 4

Due Friday 11/7

Please address all questions and comments about this problem set to 6.867-staff@ai.mit.edu.
You will need to use MATLAB for some of the problems but most of the code is provided.
If you are not familiar with MATLAB, please consult

http://www.ai.mit.edu/courses/6.867/matlab.html and the links therein.

Problem 1: Regularized Least-Squares Feature Selection

In this problem we consider a regularized approach to feature selection in a simple regression

context. Suppose we have training inputs X = (xi,...,X,) and corresponding outputs
y = (Y1,.-.,9n)’s where y; € R. We train a linear predictor g(x;w) = w'¢(x) based
on a collection of M features ¢(x) = (¢1(X),. .., dm(x))". The estimation criterion is the

following regularized least-squares objective:

11
525 yi = W'o(x:))* + Allwllx (1)
where ||w||; is the {; norm
M
[wili = > [wsl (2)
k=1

We seek the optimum parameters w = w(\) (functions of A) that minimize the regularized
objective.
w = arg min J(w;\) (3)

weRM
The use of the [; norm penalty leads to a sparse solutions such that, as A becomes large,
many of the parameters w are forced to zero. The corresponding features are then ignored
(irrelevant) in the prediction § = W/¢(x).
To solve this [-regularized least-squares problem, we consider a simple coordinate descent
approach to optimization. In this approach we adjust one parameter at a time so as to
minimize the objective while keeping the remaining parameters fixed.

wy, = argmin J(w; A) (4)



By letting k iterate over the set of all indices {1,..., M}, successively refining single pa-
rameters, and repeating this iteration over parameters many times, the parameter vector
asymptotically converges to the global minimum of the convex objective function.

In general, the coordinate descent method requires a subroutine to perform line minimiza-
tion (minimization along the chosen coordinate). Here we can solve the line minimization
in closed form.

The regularization penalty is not smooth, however, so the typical approach of setting
derivatives to zero needs to be broken down into cases. While this is fairly simple in our
regression context here, we follow a slightly more general approach, one that will be useful
for solving other problems of this type.

How do we take derivatives of non-differentiable functions? The subdifferential of a convex
function f(w) is defined as

Of(w) ={s[f(w+A) = f(w) +sA, VA e R} ()

In other words, a subdifferential is the range of slopes s such that the line through (w, f(w))
with slope s “supports” f, e.g. contains the graph of f in it’s upper half-space. This is
a set-valued generalization of the normal derivative and reduces to the normal derivative
If(w) = {%} whenever f is differentiable.

For example, the subdifferential of the absolute value function f(w) = |w| (which is not
differentiable at w = 0) is

{-1}, w < 0
If(w) =13 [-1,+1], w=0 (6)
{+1}, w>0

We will use the following result from non-smooth analysis:

Optimality Condition:  is a global minimizer of a convex function f(w) if and only if
0€df(w).

For example, the optimality condition 0 € df(w) for the absolute value function f(w) = |w|
holds if and only if w = 0. Hence, w = 0 is the (unique) global minimizer of |w|.

Below, we guide you through the analysis to solve the line minimization problem (4).

(1-1) (10pts) Show that the subdifferential of J(w;\) with respect to parameter wy, is

O, J(Wi N) = (agwi — ¢x) + Ny, |wy] (7)
{akwk — (Ck + )\)}7 wg < 0
= [—cr — A, —cx+ A, wp,=0 (8)

{akwk — (Ck — )\)}, wy > 0

with

o o= YR )
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i/, > bu(xi) (5 — W6k () (10)

where w_j, (respectively ¢_j) denote the vector of all parameters (features) except for
parameter wy, (feature ¢). (Hint. The subdifferential is given by =5 8J W0) 4 Ay, [w]
since the mean squared term is differentiable. ). Observe that the numbers ay are
non-negative (and typically positive) and constant w.r.t. the parameters. Each ¢
depends on all parameters except for the parameter w;, that we wish to update. Can
you interpret the coefficient c¢;?

(1-2) (10pts) Solve the nonsmooth optimality condition for wy s.t. 0 € 9y, J(wx). You may
find it helpful to consider each of the following cases separately:

(a) L < -
(b) ¢ € [\, +A]
(c) cx > +A

In each case, provide a hand-drawn plot 0, J(wy) versus wy and label the zero-
crossing wy. Express wy as a function of ax, ¢ and . Also, provide a hand-drawn
plot of wy versus ¢;. What role does the regularization parameter A play in this
context relative to the coefficient ¢ ?

We have provided you with training and test data in the file reg least_sq.mat. Load this
into MATLAB via load reg least_sq. You should then find four structures train small,
train med, train large and test each containing an n x m matrix X and a n x 1 vector
y. Below, you will write code to implement and test the coordinate descent method for
solving the [y-regularized least squares problem (skeletons provided). For simplicity, we
will only consider linear regression, e.g. set ¢(x) = x.

(1-3) (10pts) First, write a MATLAB subroutine based on the skeleton reg_least_sq.m to
solve for w given the training data (X,y), regularization parameter A and an initial
guess w( to seed the coordinate descent algorithm. Your procedure should repeatedly
iterate over k € {1,..., M} and set wy = wy (use your earlier result). All but the
evaluation of ¢, and wy is already provided in the skeleton reg least_sq.m.

Test your procedure by evaluating w(1) for any of the training sets. Initialize your
procedure with wy = 0.

In practice, it is often useful to solve for w(\) for a range of A values rather than for just
one particular . For instance, we typically do not know what value of A to use but might
instead have some idea as to how large training error is still acceptable or how large ||w||;
the penalty can be. This requires that we try many values of A\. One could also set A based
on cross-validation or other generalization error analysis.



(1-4) (10pts) Complete the skeleton hw4_probl.m to run your coordinate descent algorithm
for a sequence of \ values [.01 :.01:2.0]. At A =0, we set w(0) = (X'X) ' X"y, the
usual least-squares parameter estimate.

Plot each of the following versus \:

(a) the training error J(w(\);0)
(

)
b) the regularization penalty [[w(\)|;
(c) the minimized objective J(W(\); )
)
)

(d) the number of non-zero parameters |[w(\)||o (the ly norm)

(e) the test error

Run this experiment for each of the three training data sets. Comment on the be-
haviour of each of these quantities as a function of A\. For each training set, what
value of A minimizes the test error? How does this vary with the size of the training
set? How could we estimate (from the training data) the appropriate value of \ to
use so as to approximately minimize the test error?

Other variations you may wish to consider include: select among polynomial features rather
than components of the input vector directly, or find a solution by either (i) minimizing
|lw||1 subject to a constraint on the squared error (feature selection should not change the
objective by more than n) or (ii) minimizing the least-squares error directly but subject to
an [y constraint on how large the parameters can be, i.e. ||w| < W.

Problem 2: Boosting

Here we derive boosting algorithm from a slightly more general perspective that will be
applicable for a class of loss functions including the exponential loss discussed in the lecture.

The goal is again to generate discriminant functions of the form
hm(X) = aqgh(x;01) + ... + anh(x;0,,) (11)

where you can assume that the weak learners h(x; 6) are decision stumps whose predictions
are £1; any other set of weak learners would be fine without modification. We successively
add components to the overall discriminant function in a manner that will separate the
estimation of the weak learners from the setting of the votes a to the extent possible. We
will focus here on the algorithms and try to understand the complexity of these methods
in problem 3.

Let’s start by defining a set of useful loss functions. The only restriction we place on the loss
is that it should be a monotonically decreasing and differentiable function of its argument.
The argument in our context is y;h,,(x;) so that the more the discriminant function agrees



with the +1 label y;, the smaller the loss. The simple exponential loss we have already
considered, i.e.,

Loss(yihm (x:)) = exp(—yilim (x;)) (12)

certainly conforms to this notion. So does the logistic loss

Loss(yihm(x:)) = log (1 + exp(—yihm(x;)) ) (13)
The logistic loss has a nice interpretation as a negative log-probability. Indeed, recall that
for an additive logistic regression model

—logP(y = 1|x,w) = —log = log(1 + exp(—=2)) (14)

1+ exp(—2)

where z = w1¢1(x) +. .. + Wy o (x) and we omit the bias term for simplicity. By replacing
the additive combination of basis functions with the combination of weak learners, or
hm(x), we have an additive logistic regression model where the weak learners serve as
the basis functions. The difference is that both the basis functions (weak learners) and
the coefficients multiplying them will be estimated. In the logistic regression model we
typically envision a fixed set of basis functions.

The estimation criterion for the combination is simply the empirical loss:

n

T(h) = i > Loss (y,-hm(x,-)) (15)

where the summation is over the available training examples.

Let us now try to derive the boosting algorithm in a manner that can accomodate any loss
function of the type discussed above. To this end, suppose we have already included k — 1
component classifiers

~

hi—1(X) = Grh(x;01) + ... + dg_1h(x;0,1), (16)

and we wish to add another h(x;0). The estimation criterion for the overall discriminant
function, including the new component with votes «, is given by

n

J(o,0) = 7112 Loss (yihk1<xi) + yiah(x; 9)) (17)

=1

Note that we explicate only how the objective depends on the choice of the last component
and the corresponding votes since the parameters of the k — 1 previous components along
with their votes have already been set and won’t be modified further.

We will first try to find the new component or parameters 6 so as to maximize its potential
in reducing the empirical loss, potential in the sense that we can subsequently adjust the



votes to actually reduce the empirical loss. More precisely, we set € so as to minimize the
derivative

d

" d
%J(Oge)mzo = : -

2

=1

Loss(ylhk L(%) + gieh(x; 9)) (18)

« |a=0

3\»—' 3\'—

Zn:dL(ylhk . Xz))yih(xi;ﬁ) (19)

=1

where dL(z) = dLoss(z)/dz. Note this derivative - J(a,6)4—o precisely captures the
amount by which we would start to reduce the empirical loss if we gradually increased the
votes for the new component with parameters . Minimizing this reduction seems like a
sensible estimation criterion for the new component or #. This plan permits us to first set
0 and then subsequently optimize « to actually minimize the empirical loss.

Let’s rewrite the algorithm slightly to make it look more like a boosting algorithm. First,
let’s define the following weights and normalized weights on the training examples:

WD~ _qr, (yihkl(xi)> (20)
R '(k‘—l)
WD = W (21)

(x5, W)

These weights are guaranteed to be non-negative since the loss function is a decreasing
function of its argument (its derivative has to be negative or zero). In this notation,

d 1 & _
%‘](0‘ 9)\a:0 = n Wz'(k l)yih(xi;Q) (22)
=1
1 . 1) n W(k 1)
AW B ey whai ) (23)
1 L
= — W) WYy 0) (24)

J =1

By ignoring the multiplicative constant (constant at iteration k) we will estimate 6 by
minimizing

- W yin(xi;0) (25)

=1

where the normalized weights Wi(k_l) sum to one. This is the same as maximizing the

weighted agreement with the labels.

We are now ready to cast the steps of the boosting algorithm in a form similar to the
algorithm given in the lectures



(2-2)

(2-3)

(2-4)

Step 1 Find any classifier h(x; ék) that performs better than chance with respect to
the weighted training error:

e =0.5—055 WF Y yh(xi; 01) (26)
i=1
Note that the weights are normalized.

Step 2 We set the votes «, for the new component by minimizing the overall empirical
loss

~ 12 ~
J(a, O) = - Z Loss <yihk_1(xi) + y;ah(x;; Qk)> (27)
i=1

Step 3 We recompute the normalized weights for the next iteration according to

yihe(xi)

Wi(k) = —c- dL(yihkl(Xi) + yidh(x;; ék)) (28)

where c is chosen so that >, m(k) =1.

Show that the three steps in the algorithm corresponds exactly to AdaBoost when
the loss function is the exponential loss Loss(z) = exp(—z). More precisely, show
that the setting of ay based on the new weak learner and the weight update to get
I/T/Z»(k) would be identical to AdaBoost in this case.

What are the normalized weights if we use the logistic loss instead? Express the
weights as a function of the agreements y;h(x;), where we have already included the
k" weak learner.

Show that for any valid loss function of the type discussed above, the new component
h(x; ék) just added at the k' iteration would have weighted training error exactly
0.5 relative to the updated weights I/T/Z-(k). If you prefer, you can show this only in the
case of the logistic loss.

Now, we have provided you with most of the boosting algorithm with the logistic loss
and decision stumps. The available components are build stump.m, eval boost.m,
eval stump.m, and the sceleton of boost_logistic.m. The sceleton includes a bi-
section search of the optimizing a but is missing the piece of code that updates the
weights. Please fill in the appropriate weight update.

model = boost_logistic(X,y,10); returns a cell array of 10 stumps. The routine
eval boost(model,X) evaluates the combined discriminant function corresponding
to any such array.



(2-5) We have provided a dataset pertaining to cancer classification (see cancer.txt for
details). You can get the data by data = loaddata; which gives you training exam-
ples data.xtrain and labels data.ytrain. The test examples are in data.xtest and
data.ytest. Run the boosting algorithm with the logistic loss for 50 iterations and
plot the training and test errors as a function of the number of iterations. Interpret
the resulting plot.

Note that since the boosting algorithm returns a cell array of component stumps,
stored for example in model, you can easily evaluate the predictions based on any
smaller number of iterations by selecting a part of this array as in model{1:10}.

Problem 3: VC-dimension

In this problem, we will investigate the VC-dimension of various sets of classifiers. A
classifier is a function from some input space to the binary class labels +1,—1. A classifier
can also be described as a subset of the input space which gets the label +1. For example,
a linear classifier in the plane R?, can be described by a half-plane. For this reason, we
can discuss the family of linear classifiers as the set of all half-planes (and possibly also the
plane itself and the empty set).

We say that a class (i.e. set) H of classifiers shatters a set of points X = {z,x9,...,2,}
if we can classify the points in X in all possible ways. More precisely, for all 2" possible
labeling vectors y1, ya, . . ., yn € {—1, 1}", there exists a classifier h € H such that h(x;) = y;
for all 7. For any possible labelings of the points, there has to be a classifier in our set that
reproduces those labels. Using the set notation for classifiers, this means that for any subset
of examples X’ C X (indicating the subset of points labeled +1), there exist a classifier
h € H such that X Nh = X’ (the set of points for which h assigns label +1 includes X’ but
not the rest of X). It is important to understand that shattering is a property of a set of
classifiers— not of a single classifier. A single classifier cannot shatter even a single point.

The VC-dimension of a set H of classifiers is the size of the largest set of points X that
can be shattered by H.

Part I: Linear Classifiers

Consider the class Hy of linear classifiers in 2#¢. Each classifier in this class is parameterized
by a vector w € R? and has the form:

1 ifwx>0,

fine (%) = —1 otherwise

Note that we do not allow a bias term wy, and thus the separating hyperplanes must pass
through the origin.

(3-1) Show that there exists a set of d points in R? that can be shattered by H,;. What
does this tell us about the VC-dimension of H,;?
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Next, we would like to prove that no set of d + 1 points can be shattered. To do so,
we will rely on the convexity of half-spaces. Note that both closed and open half-spaces,
and so both the positive and negative regions, are convex. So, for example, any convex
combination of positive points is also positive.

We will also use the following theorem:

Radon’s Theorem: Any set of d+2 points in R¢ can be partitioned to to sets S, and S,
such that the convex hulls of Sy and Sy intersect.

(3-2) Prove that no set of d + 1 points can be shattered by H,. Conclude that the VC
dimension of Hy is exactly d. (Hint: for sets of points that do not include the origin,
use Radon’s Theorem on the points plus the origin (note that the origin is always
classified as negative). Use a separate, simpler, argument for why a set of points that
includes the origin cannot be shattered).

(3-3) We would now like to use the above result in order to bound the VC dimension of
linear classification in feature space. We say that a classifier class H is linear over d
features if every classifier h € ‘H is of the form

1 aqgi(2) + agge(z) + - - - + agpa(z) > 0,

h(z) = .
—1 otherwise

for fized feature functions ¢, (z), ..., ¢2(z), but where v varies between the classifiers

in the class. Show that the VC dimension of such a class H is at most d.

Note that the VC dimension of the class might be less then d, for example if some of the
features depend on each other, or if not all « vectors are allowed. This result can be used
to bound the VC dimension of many sets of classifiers such as linear classifiers based on
second order polynomial features.

Part II: Decision Stumps

We would now like to analyze the VC-dimension of the set of classifiers given by a linear
combination of m decision stumps in R¢. First, let us consider the VC-dimension of the set
of decision stumps themselves. Recall that a stump classifier h; o in R4 (in set notation)
is specified by an axis-parallel half-space: h; ., = {x € R%az; —b > 0} (a can always be
taken to be +1 or —1).

(3-4) For any set of n points in R?, show that the stumps can only classify the n points
in at most 2dn different ways. That is, there are at most 2dn different labelings on
the points which are attainable using stump classifiers. (Hint: count the number of
possible classifications using stumps on each axis)



(3-5) Use the above bound to show that the VC-dimension of stumps is at most 2(log, d+1).
(Hint: use the fact that log, n < n/2 and so n — logyn > n/2)

(3-6) (Optional) Consider a d = 2° dimensional space. Suggest a set of J point in RY = R
that can be shattered by stumps, and show how it can be shattered. Conclude that
the VC-dimension of stumps in R is at least |log, d] (i.e. logd rounded down to the
nearest integer).

Combining the results, we see that the VC-dimension of stumps is roughly logd.

Although the VC-dimension of stumps is fairly low, combining stumps, as we did in Ad-
aBoost, is much more expressive. A linear combination of m stumps is a classifier given by
h(x) = sign(ayh(x;01) + - - -+ @ h(X; 0,,)), where h(x; 0) are decision stumps, and oy € R
are their corresponding coefficients (the coefficients would be positive in boosting but we
will allow them to be negative here as well). Note that this is not a linear combination of
fixed basis functions, since each stump in the combination can be adjusted.

Any fixed set of m stumps provide a feature representation of the input points x, where the
m—dimensional feature vector is given by ¢(x) = [h(x;601),...,h(X;0,)]". The coefficients
Qi, ..., ., therefore define a linear classifier in this feature space. We have already shown
that the VC-dimension of such a set of linear classifiers is at most m (the number of terms
in the linear combination). We need to know how many labelings we can generate with
this set of classifiers. This is given by the following result:

Lemma: A set of classifiers with VC-dimension d can generate at most (2n/d)? labelings
over n > d points.

The rationale behind this result goes as follows. In principle any subset of r < d out of
n points could be shattered by the set of classifiers. Thus, each such subset contributes
2" possible labelings, and there are many ways of selecting subsets of size r out of n. The
lemma gives a bound on the sum of all these up to r = d:

> (1) = Cosay (29)

(3-7) Using the above result show that for any set of n points in ¢, the number of la-
belings of the n points using linear combinations of m decision stumps is at most
(2dn)™(2n/m)™. (Hint: use the above lemma for any distinct set of n binary feature
vectors ¢(x1),...,0(x,), where ¢(x;) = [h(x;;601),...,h(x;;0,,)]), that we can gen-
erate by adjusting the m stumps. The number of distinct binary feature vectors is
related to the number of possible labelings that the stumps can generate.)
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