
6.867 Machine Learning

Solutions for Problem Set 5

Monday, November 24

Problem 1: Description Length and Bayesian score

Set-up. Under model Mk, with random parameters θk ∼ p(θk), a sample xi ∈ [0, 1] is
generated with uniform probability density over the unit interval, then a Bernoulli random
variable yi ∈ {0, 1} is generated with probability of y = 1 given by θ(xi) = θj;k when xi ∈
Sj;k = [(j − 1)/2k, j/2k]. We are given a set of independent samples {(xi, yi), i = 1, ..., n}
(all generated according to the same unknown θk) and wish to estimate which model Mk

generated this data set (this is related to minimizing the description length of the data set
as discussed in the problem set).

(1-1) (2pts) The uninformative prior p(θk), for model Mk, is a constant p(θk) = 1/V for all
θk = (θ1;k, . . . , θ2k;k)′ ∈ Θk where Θk = {θk : θj;k ∈ [0, 1], j = 1, . . . , 2k}. The normalization
constraint

∫
Θk
dθk = 1 requires that V =

∫
Θk
dθk, the (hyper-)volume of Θk, which is just

V = 1:

V =
∫

θ1;k

· · ·
∫

θ
2k;k

dθ1;k · · · dθ2k;k (1)

=
2k∏

j=1

∫ 1

θj;k=0
dθj;k︸ ︷︷ ︸

1

(2)

= 1 (3)

Hence, p(θk) = 1 for all θk ∈ Θk and is zero otherwise.

(1-2) (5pts) The conditional probability of outputs yj;k = {yi : xi ∈ Sj;k} given the
corresponding inputs xj;k = {xi : xi ∈ Sj;k} is given by

P (yj;k|xj;k, θj;k) =
∏

i:xi∈Sj;k

P (yi|xi, θj;k) (4)

= θ
nj;k(1)
j;k (1 − θj;k)nj;k(0) (5)

due to the conditional independence of the outputs given the inputs. Hence, since y =
∪jyj;k and x = ∪jxj;k, the conditional probability over all samples is just:

P (y|x, θk) =
2k∏

j=1

P (yj;k|xj;k, θj;k) (6)
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Bayes, n=10
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Bayes, n=50
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BIC, n=10
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BIC, n=50

Figure 1: Plots for Problem 1. Bayesian score (top) and BIC (bottom) for n = 10 (left)
and n = 50 (right).

=
2k∏

j=1

θ
nj;k(1)
j;k (1 − θj;k)nj;k(0) (7)

(1-3) (10pts) The Bayesian score under model Mk, where θk ∼ p(θk) is the uninformative
prior, is given by simply integrating over Θk. Since P (x|y, θk) factors, the multiple integral
seperates into a product of simple integrals:

logP (y|x,Mk) = log
∫

θk

P (y|x, θk)dθk (8)

= log
∫

θk

2k∏
j=1

θ
nj;k(1)
j;k (1 − θj;k)nj;k(0)dθk (9)

= log
2k∏

j=1

∫
θj;k

θ
nj;k(1)
j;k (1 − θj;k)nj;k(0)dθj;k (10)

= log
2k∏

j=1

nj;k(0)!nj;k(1)!
(nj;k + 1)!

(11)

=
∑
j

log nj;k(0)! + lognj;k(1)! − log(nj;k + 1)! (12)

(1-4) (10pts) In this problem we consider model selection between M0 and M1. We added
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the following code to BayesCompare.m which computes the Bayesian score under these two
models:

Bscore0 = 2*lnfac(n) - lnfac(2*n+1);
Bscore1 = lnfac(n11) + lnfac(n10) - lnfac(n11+n10+1) + ...
lnfac(n21) + lnfac(n20) - lnfac(n21+n20+1);

See hw5prob1.m (bottom of page) and Figure 1.

Interpretation. The outlined region in each plot corresponds the the set of data sets (ex-
pressed in terms of the empirical distribution) which would have a higher Bayesian score
under the simpler model M0 then under the refined model M1. As n increases, we are
more apt to select the higher-order model (since we have more data to support estimation
of a more complex probability distribution). Hence, the region where M0 is selected shrinks
when we increase n.

(1-5) (10pts) Here, we approximate the Bayesian score by the BIC and consider how this
effects model selection between M0 and M1. See hw5prob1.m and Figure 1. It appears that
the BIC provides a good approximation to the Bayesian score for n = 50, but only roughly
for n = 10. This makes sense as the BIC is supposed to by an asymptotic approximation
for the Bayesian score (really only valid for large n). In both cases, the BIC will tend to
select simpler models then would be selected by the actual Bayesian score. It is still the
case that, as we increase n, the BIC favors more complex models.

% hw5prob1.m

% (1-4)
figure(1);
compareBayes(10);
title(’Bayes, n=10’);
print -deps hw5prob1_4_fig1.eps;

figure(2);
compareBayes(50);
title(’Bayes, n=50’);
print -deps hw5prob1_4_fig2.eps;

% (1-5)
figure(3);
compareBIC(10);
title(’BIC, n=10’);
print -deps hw5prob1_4_fig3.eps;

figure(4);
compareBIC(50);
title(’BIC, n=50’);
print -deps hw5prob1_4_fig3.eps;
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Problem 2: EM and mixture models

The Kullback-Leibler (KL) divergence J(Q,P ) = EQ{logQ(x, y)/P (x, y)} is best un-
derstood as an information theoretic measure of ”distance” between probability distri-
butions. By the information inequality1, KL is non-negative and is zero if and only if
P (x, y) = Q(x, y) for all x, y. Hence, we may view the EM algorithm as performing a
sequence of KL ”projections”. Let M = {P : P (x, y) = Pθ(x, y), θ ∈ Θ} be our model and
let D = {Q : Q(x) =

∑
y Q(x, y) = 1

n

∑
i δ(x|xi)} where x1, . . . ,xn are the available data.

Pick P (0) ∈ M and then, for k = 0, 1, 2, . . ., do:

Q(k) = arg min
Q∈D

J(Q,P (k)) (13)

P (k+1) = arg min
P∈M

J(Q(k), P ) (14)

The E-step projects P (k) to the set of probability distributions D consistent with the ob-
served data. The M-step then projects Q(k) back to the model M. Essentially, we are
trying to find the distribution P which comes ”nearest” (in KL-divergence) to the set D.

Discrete EM

In the first part of the problem we consider a discrete version of EM where both the visible
variable x and the hidden variable y are discrete random variables.

(2-1) (5pts) At first, we do not impose any restriction on our model P (x, y) and explore
what the EM algorithm would reduce to in this case.

E-step. In the problem set, you are told that the solution to the E-step, minimizing the
KL-divergence J(Q,P ) w.r.t Q ∈ D, is given by setting Q(y|x) = P (y|x). To see why2,
decompose the (joint) KL-divergence J(Q,P ) = Jx,y(Q,P ) as

Jx,y(Q,P ) = EQ{log
Q(x, y)
P (x, y)

} (15)

= EQ{log
Q(y|x)
P (y|x)

} + EQ{log
Q(x)
P (x)

} (16)

= Jy|x(Q,P ) + Jx(Q,P ) (17)

where Jy|x(Q,P ) is the conditional KL-divergence between Q(y|x) and P (y|x). By the
information inequality3, this is nonnegative and is zero if and only Q(y|x) = P (y|x) for all
y and all x where Q(x) > 0. Hence, we must set Q(y|xi) = P (y|xi) for all samples xi. Given
P (x, y) in the form P (x, y) = P (x|y)P (y) we need to calculate the “reverse” conditional
model employing Bayes rule:

Q(y|x) =
P (x|y)P (y)∑
y′ P (x|y′)P (y′)

(18)

1As shown in recitation, the information inequality follows from Jensen’s inequality.
2The student is not required to prove this in their solutions.
3Derived in recitation using Jensen’s inequality.
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We use this formula to calculate each Q(y|xi) for all y and i = 1, ..., n.

M-step. Next, we consider the M-step. We choose P ∈ M so as to minimize J(Q,P ).
We consider two separate arguments which give the same result (you could provide either
argument in your solution):

KL Projection. Since the Kullback-Leibler divergence J(Q,P ) is non-negative and is zero
when P (x, y) = Q(x, y) for all x, y, it is minimized by setting P (x, y) = Q(x, y) for all x, y.
Equivalently, in terms of a generative model of the form P (x, y) = P (x|y)P (y) we set

P̂ (y) = Q(y) ∀y (19)
P̂ (x|y) = Q(x|y) ∀x, y (20)

Parametric Approach. We arrive at the same result by differential analysis. Parameterize
P (x, y) = θx,y subject to the constraint

∑
x,y θx,y = 1. We then maximize the Lagrangian

objective
J(θ) = E(x,y)∼Q(x,y){logPθ(x, y)} − λ

∑
x,y

θx,y (21)

where we have introduced a Lagrange multiplier λ to enforce the constraint. Differentiating
w.r.t. parameter θx,y we obtain:

∂J(θ;λ)
∂θx,y

=
Q(x, y)
θx,y

− λ (22)

Setting this to zero gives θ̂x,y = Q(x, y)/λ. Setting λ to satisfy
∑

x,y θ̂x,y(λ) = 1 we must
have λ = 1 s.t.

θ̂x,y = Q(x, y) (23)

which is the same conclusion as in the previous argument.

Why isn’t this interesting? In this version of the EM algorithm, we placed no restriction on
the structure of P (x, y). Consequently, the EM algorithm actually “converges” after just
one iteration. Moreover, what EM converges to in this case is not very informative. If P (0)

is our initial guess, then for all k ≥ 1 we have:

P (k)(x, y) = P (0)(y|x)Q(x) (24)

Essentially, all we have done is reset the marginal distribution in x to the empirical distribu-
tion of the data Q(x) =

∑
x δ(x|xi) = n(x)/n keeping the conditional distribution P (0)(y|x)

fixed. But since P (0)(y|x) was chosen arbitrarily and Q(x) is just the known empirical
distribution of the data we really haven’t “learned” anything at all.

(2-2) (10pts) We now impose the restriction that the components of x = (x1, . . . , xd)
are conditionally independent given y, e.g. that P (x|y) =

∏d
j=1 P (xj |y). Our solution

is intended to explicate the underlying structure of EM (you may have provided a more
concise argument).
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E-step. The E-step is the same as in the preceding problem, except that we now appeal
to conditional independence to compute P (x|y) =

∏
j P (xj |y):

Q(y|x) =
P (y)

∏
j P (xj |y)∑

y′ P (y′)
∏

j P (xj |y′) (25)

We use this formula to compute Q(y|xi) for all y, i.

M-Step. Again, we consider two possible perspectives to solve the M-step.

KL Projection. For any P ∈ M we may write P (x, y) = P (y)
∏

j P (xj |y). Consequently,
we may decompose the (joint) Kullback-Leibler divergence as:

Jx,y(Q,P ) = EQ{log
Q(x, y)
P (x, y)

} (26)

= EQ{log
Q(y)
P (y)

} +
d∑

j=1

EQ{log
Q(xj |y)
P (xj |y)} + EQ{log

Q(x|y)∏
j Q(xj |y)} (27)

= Jy(Q,P ) +
∑
j

Jxj |y(Q,P ) + IQ(x1; . . . ; xd|y) (28)

Hence the optimization problem is separable s.t. we choose P (y) to minimize Jy(Q,P ),
the marginal KL-divergence between Q(y) and P (y), and choose each P (xj |y) (for each
j) to minimize Jxj |y(Q,P ), the conditional divergence between Q(xj |y) and P (xj |y) aver-
aged over y ∼ Q(y). These are Kullback-Leibler divergences so that, by the information
inequality (Jensen’s inequality), the minimum is zero and is achieved when:

P (y) = Q(y) ∀y (29)
P (xj |y) = Q(xj |y) ∀j, xj , y (30)

which is the solution to the M-step we sought. Note, the minimized KL-divergence is
then IQ(x1; . . . ; xd|y), the average mutual information between d variables x1, . . . , xd after
conditioning on y.

Parametric Approach. We can also arrive at this result by explicitly parameterizing Pθ(x, y)
as

Pθ(x, y) = θy ·
d∏

j=1

θxj |y (31)

and maximizing the objective:

J(θ) = E(x,y)∼Q(x,y){logPθ(x, y)} (32)

w.r.t. θ subject to the constraints
∑

y θy = 1 and
∑

xj
θxj |y for all j, y. This model has

2d + 1 independent parameters. Without the assumption of conditional independence we
would need 2d − 1 parameters. For d > 2 this results in a reduction in model complexity
(a very significant reduction as d becomes large).
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Introducing a Lagrange multiplier for each constraint, we define the Lagrangian objective:

J(θ;λ) = J(θ) − λ0

∑
y

θy −
∑
j,y

λj,y

∑
xj

θxj |y (33)

Differentiating w.r.t. θxj |y we obtain:

∂J(θ;λ)
∂θxj |y

=
Q(xj , y)
θxj |y

− λj,y (34)

Set this to zero and solve for θ̂xj |y(λj,y) = Q(xj , y)/λj,y. Solve for the Lagrange multiplier
to satisfy the constraint

∑
xj
θ̂xj |y = 1 which gives λ =

∑
xj
Q(xj , y) = Q(y) so that

θ̂xj |y = Q(xj |y) (35)

Similarly, differentiating w.r.t θy, we obtain:

∂J(θ;λ)
∂θy

=
Q(y)
θy

− λ0 (36)

which gives θ̂y(λ0) = Q(y)
λ0

. But, requiring
∑

y θ̂y(λ0) = 1, we must have λ0 = 1 s.t.

θ̂y = Q(y) (37)

Hence, we arrive at the final answer P̂ (x, y) = Q(y) ·∏d
j=1Q(xj |y) which is the same answer

we got previously.

Calculation of Q(y) and Q(xj |y). At this point, we have essentially specified the EM
algorithm. However, we still need to explicitly show how to compute Q(y) and Q(xj |y)
as required in the M-step. One way to compute these probabilities exploits the fact that
Q(x) is the empirical distribution so that our calculations may be expressed in terms of the
probabilities Q(y|xi) for all samples i = 1, . . . , n. We may express Q(x, y) as:

Q(x, y) = Q(y|x)Q(x) (38)

= Q(y|x)

(
1
n

∑
i

δ(x|xi)

)
(39)

=
1
n

∑
i

Q(y|xi)δ(x|xi) (40)

Then, Q(y) is given by:

Q(y) =
∑
x

Q(x, y) (41)

=
1
n

∑
i

Q(y|xi)

(∑
x

δ(x|xi)

)
︸ ︷︷ ︸

1

(42)

=
1
n

∑
i

Q(y|xi) (43)

=
n(y)
n

(44)
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where n(y) =
∑

iQ(y|xi). Similarly, we compute Q(xj , y) by summing Q(x, y) over all
possible values of x−j , i.e. by summing over all possible values of the other components of
x excluding the jth component xj :

Q(xj , y) =
∑
x−j

Q(x, y) (45)

=
1
n

∑
i

Q(y|xi)


∑

x−j

δ(x|xi)




︸ ︷︷ ︸
δ(xij |xj)

(46)

=
1
n

∑
i|xij=xj

Q(y|xi) (47)

=
n(xj , y)
n

(48)

where n(xj , y) =
∑

i|xij=xj
Q(y|xi). The sum is over all samples with jth component equal

to xj , i.e. where xij = xj . Finally, Q(xj |y) is given by:

Q(xj |y) =
Q(xj , y)
Q(y)

(49)

=
n(xj , y)
n(y)

(50)

Using these formulas, EM then has the form given in lecture. Our implementation for this
EM algorithm is given in discrete em.m reproduced below.

% discrete_em.m
function [P_y,P_xj_given_y,loglik] = discrete_em(X,N)

% N is number of possible values of y = 1,...,N
X=X+1; % elements of X are now 1 or 2 (more convenient for indexing)
n = size(X,1); % number of samples
d = size(X,2); % number components in each sample
% initialize model P
P_y = ones(N,1)/N; % uniform pmf over y
P_xj_given_y = cell(d,1); % store one transition prob matrix P(xj|y) for each j=1,...,d
for j=1:d % indexes components of x

P = rand(2,N); % transition probabilities from y=1,...,N to xk=0,1
P = P * diag(sum(P).^(-1)); % normalize columns to sum to one.
P_xj_given_y{j} = P; % conditional pmf for xj given y

end
% allocate storage for Q(y|xi), y=0,1, i=1,...,n.
Q = zeros(2,n);
% run EM algorithm...
loglik = zeros(100,1);
for k = 1:100

% E-step: compute Q(y|xi) for y=0,1 and i=1,...,n from P(y|x)
for i=1:n % iterate over samples

8



x = X(i,:);
P_x = 0.0;
for y=1:N % calc prob of y given sample i from P

Q(y,i)=P_y(y);
for j=1:d

Q(y,i)=Q(y,i)*P_xj_given_y{j}(x(j),y);
end
P_x = P_x + Q(y,i);

end
loglik(k) = loglik(k) + log(P_x);
Q(:,i) = Q(:,i)/P_x; % normalize column to sum to one

end
loglik(k) = loglik(k)/n; % avg log-lik per sample
fprintf(’iter: %d, loglik: %f\n’,k,loglik(k));
% M-step: update P based on Q
for y=1:N

n_y = sum(Q(y,:)’);
P_y(y) = n_y/n;
for j=1:d

for xj=1:2
n_y_given_xj = sum(Q(y,find(X(:,j)==xj)));
P_xj_given_y{j}(xj,y)=n_y_given_xj/n_y;

end
end

end
end

We also wrote a script hw5prob2 2.m which runs EM several times and selects the best
model. Plots of the log-likelihood vs. the number of EM iterations are shown in Figure 3.
The best model was selected and is reproduced below:

max_loglik =
-2.2166

P_y =
0.3836
0.6164

P_xj_given_y{1} =
0.0135 0.9228
0.9865 0.0772

P_xj_given_y{2} =
0.0911 0.2305
0.9089 0.7695

P_xj_given_y{3} =
0.1378 0.7449

9
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Figure 2: Plot for problem (2-2).

0.8622 0.2551

P_xj_given_y{4} =
0.8855 0.6640
0.1145 0.3360

(2-3) (optional) The analysis and MATLAB code given in the previous problem applies here
as well (N=2 previously). By increasing N , the number of hidden states y, we can refine
our model to obtain a better fit to the data. However, we also run the risk of overfitting
the data. To select the appropriate value of N , we maximize the BIC. The form of the BIC
appropriate here is:

BIC(N) =
n∑

i=1

log P̂N (xi) − 1
2

log(n)KN (51)

where the likelihood of sample xi under model N is

P̂N (xi) =
N∑

y=1

P̂N (y)
d∏

j=1

P̂N (xij |y) (52)

and the model complexity KN (the number of independent model parameters) is:

KN = (N − 1) +Nd (53)

Your MATLAB code should run EM for m = 2, 3, 4 and select the model with the highest
BIC. (MATLAB code/results omitted).

Gaussian Mixtures and EM

(2-4) (10pts) The following script hw5prob2 4.m runs em mix.m six times for each m =
2, 3, 4, 5, select the best model for each m, and evaluates the BIC.
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% hw5prob2_4.m
clear;
close all;
load hw5em2.mat;
X = data2;
n = size(X,1);
d = size(X,2);

for m=2:5
fprintf(’m = %d\n’,m);
max_ll = -inf;
for k=1:6

[param,hist,ll] = em_mix(X,m);
if (ll(end)>max_ll)

max_ll = ll(end);
eval(sprintf(’print -depsc hw5prob2_4_fig%d.eps’,m));

end
end
model_complexity = m*(d + d*(d+1)/2) + (m-1);
bic = max_ll - 0.5 * log(n) * model_complexity

end

The plots for each m are shown in Figure 3. We found that the BIC (in this run atleast)
was maximal for m = 4, then BIC ≈ −0.00417. This appears to provide a good fit for the
data. Apparently, there are 3 well-defined clusters with high prior probabilities and one
weaker cluster with low prior probability.

(2-5) (optional) The modified EM procedure is the same except that we now calculate the
single covariance matrix Σ0 according to the formula:

Σ(k+1)
0 =

1
n

n∑
i=1

m∑
j=1

P (k)(j|i)(xi − µ(k+1)
j )(xi − µ(k+1)

j )′ (54)

where P (k)(j|i) = P (k)(y = j|x = xi) is computed from the previous estimate of the
mixture model. Once we have estimated a mixture model for each m, we evalute the BIC
as a function of m according to the formula:

BIC(m) =
∑

i

P̂m(xi) − 1
2

log(n){(m− 1) +m · (
1
2
d(d+ 1) + d)} (55)

and then select the model with the highest BIC. (MATLAB code/results omitted).

Problem 3: Clustering

(3-1) (10pts) Here is the modified code kmeans.m:

y = zeros(n,1);

11
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Figure 3: Plots for (2-4) of EM estimated Gaussian mixture models for m = 2, 3, 4, 5 (resp.
top-left, top-right, bottom-left and bottom-right).
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for t = 1:100
% Fill in the k-means updates here
% assign each input to the nearest cluster
for i=1:n

d = zeros(k,1);
for j=1:k

d(j) = norm(X(i,:)-centers(j,:));
end
[dmin,y(i)] = min(d);

end
% recompute the cluster means
for j=1:k

Ij = find(y==j);
if (length(Ij))

centers(j,:) = mean(X(Ij,:));
end

end
end

Here is our script hw5prob3 1.m:

clear;
close all;
load clustdata.mat;

X=X1;
for k=2:5
y = kmeans(X,k);
plotclust(X,y);
eval(sprintf(’print -depsc hw5prob3_1_X1_%d.eps’,k));

end

X=X2;
for k=2:5
y = kmeans(X,k);
plotclust(X,y);
eval(sprintf(’print -depsc hw5prob3_1_X2_%d.eps’,k));

end

X=X3;
for k=2:5
y = kmeans(X,k);
plotclust(X,y);
eval(sprintf(’print -depsc hw5prob3_1_X3_%d.eps’,k));

end
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Figure 4: Plots for problem (3-1) for k = 2, 3, 4, 5 (left to right) and X1, X2, X3 (top to
bottom).

The plots generated by this script are shown in Figure 4.

(3-2) (5pts) To choose between the various possible stable points of the k-means algorithm,
we should select the clustering which minimizes the average squared distance of each point
from its associated mean:

J(a, µ) =
1
n

n∑
i=1

‖xi − µa(i)‖2 (56)

Where µj for j = 1, . . . , k are the cluster means and a : {1, . . . , n} → {1, . . . , k} assigns
samples to clusters. Note that the “e-step” of k-means assigns each point i to cluster a(i)
so as to minize J(a, µ) for fixed means µ while the “m-step” of k-means resets the means
µ so as to minimize J(a, µ) subject to fixed associations a.

Here is our code to compute this metric:

% kmeans_metric.m

function J = kmeans_metric(y,X)

[n,d] = size(X);
k = max(y);

J = 0.0;
for j=1:k
Ij = find(y==j);

14



mu_j = mean(X(Ij,:));
for i=1:n

del = (X(i,:) - mu_j)’;
J = J + del’*del;

end
end

Here is our script for this problem:

% hw5prob3_2.m

clear;
close all;
load clustdata.mat;

X=X1;
for k=2:5
J_min = +inf;
for trial=1:5

y = kmeans(X,k);
J = kmeans_metric(y,X);
if (J < J_min)

J_min = J;
plotclust(X,y);
refresh;
eval(sprintf(’print -depsc hw5prob3_2_X1_%d.eps’,k));

end
end

end

X=X2;
for k=2:5
J_min = +inf;
for trial=1:5

y = kmeans(X,k);
J = kmeans_metric(y,X);
if (J < J_min)

J_min = J;
plotclust(X,y);
refresh;
eval(sprintf(’print -depsc hw5prob3_2_X2_%d.eps’,k));

end
end

end
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Figure 5: Plots for problem (3-2) for k = 2, 3, 4, 5 (left to right) and X1, X2, X3 (top to
bottom).

X=X3;
for k=2:5
J_min = +inf;
for trial=1:5

y = kmeans(X,k);
J = kmeans_metric(y,X);
if (J < J_min)

J_min = J;
plotclust(X,y);
refresh;
eval(sprintf(’print -depsc hw5prob3_2_X3_%d.eps’,k));

end
end

end

The plots generated by this script are shown in Figure 5.

(3-3) (5pts) It probably makes more sense to run k-means many times (for fewer iterations)
rather then fewer times (for many iterations) since this should give us a coarse estimate of
the global minimum rather than a precise estimate of a local minimum.

(3-4) (5pts) No, this metric would always favor higher values of k as we can always decrease
J by adding more clusters. For instance, let k = n and set µj = xj for j = 1, . . . , n so that
J = 0. This would certainly tend to overfit the data.
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(3-5) (5pts) Run EM to generate a joint Gaussian mixture model for (x, y) with y =
1, . . . , k. Then, for each sample x, estimate ŷ(x) = arg maxy P (y|x). These estimates then
produce a clustering of the input samples.

(3-6) (5pts) First, we show that the vector π = (1, . . . , 1)′ is an eigenvector of the transittion
probability matrix P , with entries Pij = P (j|i), and has eigenvalue λ = 1, i.e. P · π = π.

(P · π)i =
∑

i

Pijπj (57)

=
∑

i

Pij1 (58)

=
∑

i

P (j|i) (59)

= 1 (60)
= πi (61)

Hence, P · π = λπ with λ = 1 as was to be shown.

Now, we argue that λ = 1 must be the largest eigenvalue. Suppose there existed a vector
π s.t. P · π = λπ with λ > 1.0. Then, the t-step transition probability matrix P t must
have some eigenvalues going to infinity as t becomes large. But this violates P t being a
transition probability matrix (with entries between 0 and 1). Hence, λ = 1 is the maximum
eigenvalue of P .

Moreover, the symmetric matrix considered in spectral clustering is similar to P and hence
has the same eigenvalues as P (with maximum eigenvalue 1 as claimed in lecture).

(3-7) (10pts) Here is the code we modified in spectral.m:

% modified code...
if (k<2)

error(’Only works for k>=2’)
end

...

% removed code...
% V = V(:,I(end-1)); % eigenvector corresp. to second largest eigenvalue
% y = (3+sign(V))./2;

% added code...
Xk = V(:,[2:k]);
J_min = +inf;
y=[];
for trial=1:5
y_trial = kmeans(Xk,k);
J = kmeans_metric(y,Xk);
if (J < J_min)
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J_min = J;
y = y_trial;

end
end

I got good results by using r = 4 nearest neighbors and setting β = 0.1 (roughly the inter-
point distance between nearest neighbors). Here is our automated script for this problem:

% hw5prob3_7.m

clear;
close all;
load clustdata.mat;

r=4;
beta=0.1;

X=X1;
for k=2:5
y = spectral(X,k,r,beta);
refresh;
eval(sprintf(’print -depsc hw5prob3_7_X1_%d.eps’,k));

end

X=X2;
for k=2:5
y = spectral(X,k,r,beta);
refresh;
eval(sprintf(’print -depsc hw5prob3_7_X2_%d.eps’,k));

end

X=X3;
for k=2:5
y = spectral(X,k,r,beta);
refresh;
eval(sprintf(’print -depsc hw5prob3_7_X3_%d.eps’,k));

end

The plots generated by this script are shown in Figure 6.

(3-8) (5pts) We need to recompute the means µj = 1
nj

∑
i:a(i)=j xi where nj = |{xi :

a(i) = j}| at each iteration of the k-means algorithm. We can’t recover these from just the
inter-point distances Dij = ‖xi − xj‖ for all i, j.
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Figure 6: Plots for problem (3-7) for k = 2, 3, 4, 5 (left to right) and X1, X2, X3 (top to
bottom).
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