
6.867 Machine Learning

Problem Set 5

Due Friday 11/21

Please address all questions and comments about this problem set to 6.867-staff@ai.mit.edu.

Problem 1: Description length and bayesian score

We explore here briefly a model selection approach based on Bayesian score. Suppose we
wish to select among alternative models M1, M2, . . . ,Mk, . . .. Each model comes with a
parameterized distribution over labels P (y|x, θk), where θk denotes the set of parameters
associated with model Mk, chosen from the set of possible parameters Θk. For example, if
M1 is a linear classifier and x ∈ Rd, then θ1 = [θ10, . . . , θ1d]

′ and Θ1 = Rd+1.

Each model Mk is also associated with a specific prior distribution over the parameters,
P (θk). When the parameter space is compact, for example

Θk = {θk : |θkj| ≤ c, j = 0, . . . , d} (1)

then we can choose the prior distribution to be uninformative in the sense that there’s no
a priori bias towards one setting or another. The prior in this case is simply a constant
density

P (θk) =
1

V
, where V =

∫
Θk

1 dθk (2)

When the parameter space is not compact we would have to define a (nearly) uninformative
prior in other ways. It is strictly speaking a bit questionable to call any prior “uninforma-
tive” but we will do so regardless. The nature of the prior won’t be relevant to our initial
discussion here.

The bayesian model is “trained” by updating the distribution over the parameters based on
the observations. Let us consider each training example-label pair in turn. The probability
that we assign to the first label y1 given x1 is calculated based on the original prior:

P (y1|x1, Mk) =
∫
Θk

P (y1|x1, θk)P (θk)dθk (3)

In other words, we predict with the average probability of y1 given x1, averaged relative to
the prior. Note that this probability still depends on the model since both the parameter
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space and the prior are properties of the model Mk. In terms of description length, sending
the label y1 now costs us

DL(1) = − log2 P (y1|x1, Mk) (4)

bits. Once we have sent the first bit we can use its label to refine the distribution over the
parameters (the receiver could in principle repeat our actions once they already have y1).
The distribution over the parameters (posterior) after seing the first label is

P (θk|D1) =
P (y1|x1, θk)P (θk)∫

Θk
P (y1|x1, θ′k)P (θ′k)dθ′k

=
P (y1|x1, θk)P (θk)

P (y1|x1, Mk)
(5)

where D1 = {x1, y1}.
We predict the second label analogously, now using P (θk|D1) in place of the prior:

P (y2|x2, D1, Mk) =
∫
Θk

P (y2|x2, θk)P (θk|D1)dθk (6)

=
∫
Θk

P (y2|x2, θk)
P (y1|x1, θk)P (θk)

P (y1|x1, Mk)
dθk (7)

=
1

P (y1|x1, Mk)
·
∫
Θk

[
P (y2|x2, θk)P (y1|x1, θk)

]
P (θk)dθk (8)

Sending this label will cost us

DL(2|1) = − log2 P (y2|x2, D1, Mk) (9)

= log2 P (y1|x1, Mk)− log2

∫
Θk

[
P (y2|x2, θk)P (y1|x1, θk)

]
P (θk)dθk (10)

bits. Let’s see how we are doing and add the cost of sending the first two labels:

DL(1, 2) = DL(1) + DL(2|1) (11)

= − log2

∫
Θk

[
P (y2|x2, θk)P (y1|x1, θk)

]
P (θk)dθk (12)

This suggests that if we continue in the same manner the cost of sending all the n labels
will be exactly

DL(1, . . . , n) = − log2

∫
Θk

[ n∏
i=1

P (yi|xi, θk)
]
P (θk)dθk (13)

bits. There are two important things to note about this result. First, it does not depend on
the order in which we have chosen to send the labels. This property where the order of the
samples does not change the probability is referred to as exchangeability. Second, it seems
we’d get the same result if we encoded the labels using the following overall conditional
distribution:

P (y1, . . . , yn|x1, . . . ,xn, Mk) =
∫
Θk

[ n∏
i=1

P (yi|xi, θk)
]
P (θk)dθk (14)
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Let’s understand this probability in a bit more detail. First, the labels are not independent
of each other according to this conditional distribution. We did, after all, adjust the
distribution over the parameters after each training example and label in the sequential
procedure; labels later on were predicted with the knowledge of the preceding ones. So
why is it that the above conditional distribution over all the labels together does not
appear to be “trained” at all but merely averaged relative to the prior? This is because our
sequential procedure was a fair way of evaluating the Bayesian method; we only conditioned
predictions on information already available. Indeed, unlike with the maximum likelihood
criterion, no other complexity penalty is necessary for evaluating the specific model. The
log-probability

log
∫
Θk

[ n∏
i=1

P (yi|xi, θk)
]
P (θk)dθk (15)

is known as the Bayesian score for model Mk. Note that the description length and the
Bayesian score are one and the same (only differ in terms of the overall sign and typically
use a different base logarithm). We will adopt the Bayesian score in the remainder of this
problem.

The problem: In this problem we will use the Bayesian score for model selection. For
simplicity we assume that the labels are binary (0/1) and x ∈ [0, 1]. The inputs x are
drawn uniformly at random from the interval [0, 1]. We define the set of possible models
as follows. For any k = 0, 1, . . . (indexing model Mk) we divide the segment [0, 1] into 2k

equal size regions. Within the jth region Sj;k we set the overall probability of 0/1 labels:

P (y = 1|x, θk) = θj;k, when x ∈ Sj;k (16)

where θk = {θj;k, j = 1, . . . , 2k}. The parameters across the regions can be set indepen-
dently. We use an uninformative prior over the parameters, as defined earlier. Note that
model Mk+1 can be seen as a refinement of Mk for any k.

(1-1) (2pts) Write explicitly the uninformative prior over the parameters θk = {θj;k, j =
1, . . . , 2k} for model Mk.

Let nj;k denote the number of times x falls in region Sj;k based on the available data
{(x1, y1), . . . , (xn, yn)}. Note that these counts depend on the model since they are specific
to the regions that the model uses. We also define nj;k(y) as the counts of labels in these
regions. Clearly,

∑
y=0,1 nj;k(y) = nj;k.

(1-2) (5pts) Let xj;k be the set of points that fell in region Sj;k (there are nj;k of them)
and yj;k the corresponding labels (summarized by the statistics nj;k(y)). Express the
conditional probability P (yj;k|xj;k, θj;k) in terms of the counts. Collect the results for
all regions to get P (y1, . . . , yn|x1, . . . , xn, θk).
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(1-3) (10pts) Using the counts nj;k(y) given above and the integral∫ 1

0
θk(1− θ)ldθ =

k!l!

(k + l + 1)!
(17)

write the expression for the bayesian score of model Mk. How do the regions without
points contribute to the score?

To understand the score in a bit more detail let’s consider the choice between models M0

and M1. The same type of choices are made (only at a finer level) when choosing between
Mk and Mk+1. Suppose the available data consists of exactly 2n points, where n of them
are labeled y = 1 and the rest y = 0. We are interested in comparing the scores for M0 and
M1 based on how the 2n samples are divided across the two regions that M1 cares about
(M0 only has one region, the interval [0, 1]).

Now, we can put i = 0, . . . , n of the points labeled y = 1 in the first region [0, 1/2) and
the rest in the second. We can similarly divide the points labeled y = 0 in n + 1 possible
ways across the two regions. We are interested in understanding the difference between
the scores for M0 and M1 for any combination of such divisions. In other words, we are
exploring how we would choose between the models in response to the data.

(1-4) (10pts) We have provided you with a skeleton routine compareBayes(n) that plots
where the scores for M1 and M0 match. The two axis of the plot are the fraction of
y = 1 points that fall in the first region, and the fraction of y = 0 points that fall
in the first region. Since our prior places no preference over either label, the plot is
symmetric. You need to

a) fill in the evaluation of the scores for the two models.

b) Run the routine with n = 10 and n = 50. Interpret the regions separated in the
plot. Interpret any differences in the plots corresponding to n = 10 and n = 50.

BIC (Bayesian Information Criterion) is an asymptotic approximation to the Bayesian
score. In our setting it is given by

log P (y1, . . . , yN |x1, . . . , xN , θ̂k)−
dk

2
log(N) (18)

where N is the number of data points (here 2n), θ̂ is the maximum likelihood parameter
estimates for the model Mk, and dk is the number of independent parameters in the model
(cf. the asymptotic MDL criterion discussed in the lectures).

(1-5) (10pts) Use the provided routine compareBIC(n) to produce the analogous plots for
BIC. Compare the resulting plots with those of the Bayesian score. Are there any
systematic differences? Does one criterion tend to select more complex models than
the other?
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Problem 2: EM and mixture models

In this problem you will develop variants of the expectation-maximization (EM) procedure
to perform parameter estimation w.r.t. to a probabilistic model in two variables (x, y). Here
x ∈ Rd is visible and y is hidden. Our training data is comprised of just samples (x1, . . . ,xn)
of the visible variable x but we still wish to estimate a joint model over both x and y. One
motivation for this setting goes as follows. In a typical application the full distribution over
the visible variables P (x) may be too complicated to model directly. Instead, we assume
that with some additional information, call it y, the conditional distribution P (x|y) takes
a much simpler and manageable form.

We consider here generative models of the form P (x, y) = P (x|y)P (y). There are many
ways of parameterizing generative models of this type. Let θ ∈ Θ denote the parameters of
this model (we will discuss specific choices below). The set of possible joint distributions
is then given by

M = {P : P (x, y) = P (x|y, θ)P (y|θ), θ ∈ Θ} (19)

The Expectation-Maximization (EM) algorithm is an iterative parameter fitting routine
designed for this situation. Rather than attempting to optimize the likelihood directly,
we introduce an auxiliary distribution Q(x, y), with the marginal distribution over x set
to the empirical distribution of the data. That is, Q(x, y) = Q(y|x)Q(x) where Q(x) =
1
n

∑
i δ(x|xi). We are free to choose Q(y|xi) for each sample xi.

We then minimize the Kullback-Leibler divergence (up to a constant) between the auxiliary
distribution Q and the model P ∈M.

J(Q, P ) = E(x,y)∼Q

{
log

Q(x, y)

P (x, y)

}
(20)

=
1

n

n∑
i=1

∑
y

Q(y|xi) log
Q(y|xi)

P (xi, y)
+ const. (21)

This is minus the auxiliary objective defined in lecture (save for the constant). The min-
imization is accomplished by providing an initial guess P (0) ∈ M about the joint model
and then alternating the following steps:

1. E-step. Update the conditional part of the auxiliary distribution, i.e., update Q(x|y),
so as to minimize the objective.

Q(k) = arg min
Q(y|x)

J(Q,P (k)) (22)

The solution to the E-step is given by selecting Q(k)(y|x) to agree with the posterior
under P (k), i.e. by setting Q(k)(y|xi) = P (k)(y|xi) for all y and for each sample
x1, . . . ,xn.

2. M-step. Update P so as to minimize the objective.

P (k+1) = arg min
P∈M

J(Q(k), P ) (23)
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The solution to the M-step depends upon the model M but reduces to weighted
maximum-likelihood calculation over this parameterized family of probability distri-
butions.

P (k+1) = arg max
P∈M

n∑
i=1

Ey∼Q(k)(y|xi){log P (xi, y)} (24)

= arg max
P∈M

n∑
i=1

∑
y

Q(k)(y|xi) log P (xi, y) (25)

Iterating these two steps for k = 0, 1, . . ., EM generates a sequence of models P (k) ∈
M. As discussed in lecture, the log-likelihood of the data {xi, i = 1, . . . , n} w.r.t P (k) is
monotonically increasing as a function of k.

Discrete EM. First, let’s consider the case that both x and y are discrete random
variables.

(2-1) (5pts) Let y be a binary (0/1) random variable and let x take 2d possible values,
x ∈ {0, . . . , 2d − 1}. Let P (x, y) = P (x|y)P (y) be fully-parameterized; in other
words, there are no restrictions on how we can set P (x|y) and P (y). Work out both
the E- and M-steps for this simple problem. Can you explain why this simple case is
perhaps not very interesting?

(2-2) (10 pts) Next, suppose we can instead decompose the output variables x into d
binary components x = (x1, . . . , xd) such that each of these are 0/1 binary random
variables. Let’s also model the components as being conditionally independent given
y, that is require that P (x|y) =

∏d
k=1 P (xk|y). Work out the M-step for this problem.

Implement your procedure in MATLAB and run your procedure based on the data
data1 in hw4em1.mat. In this context, EM is essentially trying to “learn” 1-bit of
information that the components x1, . . . ,xd have in common.

Note that we are not looking for a general implementation of EM but a simple one
tailored to this case.

(2-3) (optional) How could we generalize the above approach to refine our model? (Hint.
Let y ∈ {1, . . . , N}). Implement your proposal and employ the Bayesian information
criterion (BIC) to select the order N of your model.

Gaussian Mixtures and EM. Next consider the case that the hidden variable y ∈
{1, ...,m} is discrete while the visible variable x ∈ Rd is continuous. In other words, we
consider mixture models of the form

p(x) =
m∑

j=1

p(x|y = j)P (y = j) (26)
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We assume throughout that x is conditionally Gaussian in the sense that x ∼ N (µj, Σj)
when y = j.

We have provided you with the EM code for mixture of Gaussians (with visualization).
The command to run is

[param,history,ll] = em_mix(data,m,eps);

where the input points are given as rows of data, m is the number of components in the
estimated mixture, and eps determines the stopping criteria of EM: the algorithm stops
when the relative change in log-likelihood falls below eps. In the output, param is a cell
array with m elements. Each element is a structure with the following fields:

mean - the resulting mean of the Gaussian component,

cov - the resulting covariance matrix of the component,

p - the resulting estimate of the mixing parameter.

The value of param is updated after every iteration of EM; the output argument history
contains copies of these subsequent values of param and allows to analyze our experiments.
Finally, ll is the vector where the t-th element is the value of the log-likelihood of the data
after t iterations (i.e. the last element is the final log-likelihood of the fitted mixture of
Gaussians).

To overcome any numerical problems the code involves (slight) regularization. Specifically,
the M-step of the EM algorithm solves a regularized weighted log-likelihood problem, where
the prior distribution over the mixing proportions is a Dirichlet and the prior over each
covariance matrix is a Wishart. The equivalent sample size is set to one. The returned log-
likelihood values include the regularization penalties (log-priors). See the code for details
if you wish to change any of these settings.

(2-4) (10pts) Run the EM algorithm based on data2 provided by hw5em2.mat with m =
2, 3, 4, 5 components. Select the appropriate model according to the Bayesian Infor-
mation Criterion (BIC). Note that you may have to rerun the algorithm a few times
(and select the model with the highest log-likelihood) for each choice of m as EM can
sometimes get stuck in a local minimum. Is the model selection result sensible based
on what you would expect visually? Why or why not?

(2-5) (optional) Modify the M-step of the EM code so that the covariance matrices of
the Gaussian components are constrained to be equal. Rerun the model selection
problem using BIC as the selection criterion. Would we select a different number of
components in this case?
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Problem 3: Spectral clustering

In this problem we will experiment with k-means and a spectral clustering algorithm. We
have provided you with a skeleton for a k-means clustering routine, as well as two routines
for data generation and plotting:

X = mkdata(m,n) generates random 2D data points, from m Gaussian distributions, with
n points from each.

X = build allows you to create a data set of manually (graphically) entered points.

plotclust(X,y) plots the 2D points specified in the rows of X, and colors each point
according to the cluster assignments specified in the vector y (one integer value per
point).

The file clustdata.mat also contains three data sets X1, X2 and X3.

(3-1) (10pts) Complete the provided skeleton for k-means clustering. The provided skeleton
initializes the centers to a random subset of the points, and imposes a constant number
(100) of k-means iterations.

Use your k-means implementation to cluster the three provided data sets into k =
2, 3, 4, 5 clusters. For each data set and each number of clusters, try running the
routine several times. You can also generate additional data sets and test the behavior
of k-means on them.

(3-2) (5pts) Why do different executions with the same setting for k yield different cluster-
ings? How would you choose, in an automated way, between these various clusterings?
Write a matlab routine that runs k-means five times and chooses the best of the five
clusterings (it might be useful to add some calculations, or output variables, to the
k-means routine).

(3-3) (5pts) Provided that you have only limited computation time, do you think it makes
sense to run k-means several times separately and choose a clustering based on the
criterion you suggested, instead of running k-means a single time for more iterations?
Why?

(3-4) (5pts) Could the same criterion be used in order to choose between different number
of clusters? Why?

Although you should be able to cluster data set X1, as well as most data sets generated by
mkdata, using k-means clustering, the clustering produced for data sets X2 and X3 do not
seem ’natural’.
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(3-5) (5pts) We saw in lecture how k-means can be seen as a ’hard’ version of Gaus-
sian mixture density estimation. Suggest a clustering procedure based on Gaussian
mixture density estimation that would be able to cluster data set two into natural
clusters. You do not need to implement this method. (Hint: would a method based
on equal-variance spherical Gaussian be able to capture the clusters?).

We will now see how spectral clustering can be used to cluster data such as X2 and X3.

A Matlab implementation of the spectral clustering method presented in lecture is provided
in spectral.m. You can call it as

labels = spectral(X,2,r,beta);

where X is an n × 2 data matrix, with a 2D data vector in each row, r is the number of
neighbors to use in the neighborhood graph, and beta is the parameter determining the
exponential decay of the edge weights as a function of the distance. The default value for
r is 3 and the default for beta is 1. You might want to refer to Fall 2002 Problem Set 6
(solutions available online; link from the course website) for a discussion on the effect of
various settings of r and β.

Our routine only implements clustering into two clusters, as presented in lecture.

A possibly way of extending the spectral clustering framework to more than two clusters is
as follows: instead of considering only the eigenvector with the second largest eigenvalue,
consider the k eigenvectors v1, . . . , vk with the k largest eigenvalues. The ith point in the
data set can now be represented by the k-dimensional vector (v1[i], v2[i], . . . , vk[i]). We
can subsequently use k-means in order to cluster the points in this new k-dimensional
representation (k-means and k-dimensional can refer to different k’s).

(3-6) (5pts) Given an n × n transition probability matrix P show that the leading eigen-
vector (the eigenvector with largest eigenvalue) can always be taken to be the vector
of all ones.

(3-7) (10pts) Modify our spectral clustering routine to cluster the points into k clusters
using this method.

Run the spectral clustering routine, with k = 2, 3, 4, 5 on the three data sets, and
possibly on other data sets you generated, and experiment with various settings of r
and β. Try explaining to yourself the values of r and β that result in the ’natural’
clustering, and what happens, e.g., when r is too small, or β is too small or too large.

Another advantage of spectral clustering is that all the operations can be done purely in
terms of distances between the points. This means that the points to be clustered need not
be points in any Rd Euclidean space, and all that is needed are the distances between the
points, or even just the distances between close-by points.

(3-8) (5pts) Why is it not enough to specify only inter-point distances for k-means? What
other operation needs to be performed on the input points in k-means?
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