Machine learning: lecture 1

Tommi S. Jaakkola MIT CSAIL tommi@csail.mit.edu

6.867 Machine learning: administrivia

- Instructor: Prof. Tommi Jaakkola (tommi@csail.mit.edu)
- TA: Jason Johnson (jasonj@mit.edu)
- General info
 - lectures MW 2.30-4pm in 35-225
 - tutorials/recitations (time/location tba)
 - website http://www.ai.mit.edu/courses/6.867
- Grading
 - midterm (15%), final (25%)
 - 6 (\approx bi-weekly) problem sets (30%)
 - final project (30%)

Machine learning

- Statistical machine learning
 - principles, methods, and algorithms for learning and prediction on the basis of past experience
 - already everywhere: speech recognition, hand-written character recognition, information retrieval, operating systems, compilers, fraud detection, security, defense applications, ...

• Steps

- entertain a (biased) set of possibilities
- adjust predictions based on feedback
- rethink the set of possibilities

- Steps
 - entertain a (biased) set of possibilities
 - adjust predictions based on feedback
 - rethink the set of possibilities
- Principles of learning are "universal"
 - society (e.g., scientific community)
 - animal (e.g., human)
 - machine

Learning and prediction

- We make predictions all the time but rarely investigate the processes underlying our predictions
- In carrying out scientific research we are also governed by how theories are evaluated
- To automate the process of making predictions we need to understand *in addition* how we search and refine "theories"

- data and assumptions
 - what data is available for the learning task?
 - what can we assume about the problem?

- data and assumptions
 - what data is available for the learning task?
 - what can we assume about the problem?
- representation
 - how should we represent the examples to be classified

- data and assumptions
 - what data is available for the learning task?
 - what can we assume about the problem?
- representation
 - how should we represent the examples to be classified
- method and estimation
 - what are the possible hypotheses?
 - how do we adjust our predictions based on the feedback?

- data and assumptions
 - what data is available for the learning task?
 - what can we assume about the problem?
- representation
 - how should we represent the examples to be classified
- method and estimation
 - what are the possible hypotheses?
 - how do we adjust our predictions based on the feedback?
- evaluation
 - how well are we doing?

- data and assumptions
 - what data is available for the learning task?
 - what can we assume about the problem?
- representation
 - how should we represent the examples to be classified
- method and estimation
 - what are the possible hypotheses?
 - how do we adjust our predictions based on the feedback?
- evaluation
 - how well are we doing?
- model selection
 - can we rethink the approach to do even better?

Data and assumptions

- is this a digit/character/image classification problem?
- how are the examples generated/labeled?

Representation

• There are many ways of presenting the same information

• The choice of representation may determine whether the learning task is very easy or very difficult

Representation

Representation

Method and estimation

- Examples (binary vectors of length d = 64) $\mathbf{x} = [111111100...000011000110111111]^T$
- Labels $y \in \{-1, 1\}$ ("no"," yes")
- A linear classifier (hypotheses)

$$\hat{y} = \operatorname{sign}(\theta \cdot \mathbf{x}) = \operatorname{sign}\left(\sum_{i=1}^{d} \theta_i x_i\right)$$

where θ is a vector of *parameters* we have to learn.

Method and estimation cont'd

• How do we adjust the parameters θ based on the labels?

. . .

 $\hat{y} = \operatorname{sign}(\theta \cdot \mathbf{x})$

. . .

Method and estimation cont'd

• How do we adjust the parameters θ based on the labels?

. . .

$$\hat{y} = \operatorname{sign}(\theta \cdot \mathbf{x})$$

For example, we can simply refine/update the parameters whenever we make a mistake

 $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + y \mathbf{x}$ when prediction was wrong

. . .

Evaluation

• How do we measure how well the method is working?

Evaluation

• How do we measure how well the method is working?

For example: average classification/prediction error as a function of the number of examples seen so far

Model selection

- Can we rethink the approach to do even better?
 - our classifier is limited, can we make it more flexible?
 - is there an entirely different type of classifier that would be more suitable?

Types of learning problems

A rough classification of learning problems:

- Supervised learning
 - explicit feedback (e.g., labels)
- Unsupervised learning
 - no feedback, emphasis on structure and organization
- Semi-supervised learning
 - partial feedback (e.g., a few labels, mostly unlabeled)
- Reinforcement learning
 - delayed feedback