
Machine learning: lecture 10

Tommi S. Jaakkola

MIT CSAIL

tommi@csail.mit.edu

Topics
• Feature selection cont’d

– greedy selection, regularization

• Combination of methods

– regression: forward fitting

– classification: decision stumps, reweighting, adaboost

Tommi Jaakkola, MIT CSAIL 2

Review: feature selection
• The goal here is document classification based on feature

vectors (word indicators) Φ = [φ1, . . . , φm]T

• To improve classification performance we include only

features that have high mutual information with the labels:

Î(φi; y) =
∑

φi=0,1

∑
y=0,1

P̂ (φi, y) log2

[
P̂ (φi, y)

P̂ (φi)P̂ (y)

]

• Many questions remain:

– how many features do we include?

– what about redundant features?

– coordination among features?

– which classifier does this type of selection benefit?

Tommi Jaakkola, MIT CSAIL 3

Alternative methods
• We can also try to solve the document classification task with

a logistic regression model (or other discriminative classifier)

Our prediction based on m binary word features Φ =
[φ1, . . . , φm]T is given by

P (y = 1|Φ,w) = g(w0 + w1φ1 + . . . wmφm)

where g(·) is the logistic function.

• There many alternative feature selection methods

1. greedy selection (adding/pruning) of features

2. find relevant features using regularization

Tommi Jaakkola, MIT CSAIL 4

Greedy selection of features
1. Find k for which

P (y = 1|Φ, w0, wk) = g(w0 + wkφk)

leads to the best classifier

2. Find k′ for which

P (y = 1|Φ, w0, wk, wk′) = g(w0 + wkφk + wk′φk′)

yields the best classifier. Here all the parameters w0, wk and

wk′ should be reoptimized when trying to add each k′

3. etc.

(we need a stopping criterion)

Tommi Jaakkola, MIT CSAIL 5

Feature selection via regularization

P (y = 1|Φ,w) = g(w0 + w1φ1 + . . . + wmφm)

• We can introduce a regularization penalty that tries to set

the weights to zero unless they are “useful”

J(w;C) =
n∑

t=1

log P (yt|Φt,w)− C

m∑
i=1

|wi|

Note that w0 is not penalized.

• The selection of non-zero weights here is carried out jointly,

not individually

• Why should this regularization penalty lead to a sparse

solution?

Tommi Jaakkola, MIT CSAIL 6

Feature selection via regularization cont’d
• The effect of the regularization penalty on feature selection

depends on its derivative at w ≈ 0

−2 −1 0 1 2
0

0.5

1

1.5

2

w2/2 versus |w|

J(w;C) =
n∑

t=1

log P (yt|Φt,w)− C
m∑

i=1

|wi|

• How do we deal with redundant features?

Tommi Jaakkola, MIT CSAIL 7

Combination of methods
• Similarly to feature selection we can select simple “weak”

classification or regression methods and combine them into

a single “strong” method

• Example techniques

– forward fitting (regression)

– boosting (classification)

Tommi Jaakkola, MIT CSAIL 8

Combination of regression methods
• We want to combine multiple “weak” regression methods

into a single “strong” method

f(x) = f(x; θ1) + . . . + f(x; θm)

• Suppose we are given a family simple regression methods

f(x; θ) = w φk(x)

where θ = {k, w} specifies the identity of the basis function

as well as the associated weight.

• Forward-fitting: sequentially introduce new simple regression

methods to reduce the remaining prediction error

Tommi Jaakkola, MIT CSAIL 9

Forward fitting cont’d
Simple family: f(x; θ) = wφk(x), θ = {k, w}

• We can fit each new component to reduce the prediction

error; in each iteration we solve the same type of estimation

problem

Step 1: θ̂1← argmin
θ

n∑
i=1

(yi − f(xi; θ))2

Tommi Jaakkola, MIT CSAIL 10

Forward fitting cont’d
Simple family: f(x; θ) = wφk(x), θ = {k, w}

• We can fit each new component to reduce the prediction

error; in each iteration we solve the same type of estimation

problem

Step 1: θ̂1← argmin
θ

n∑
i=1

(yi − f(xi; θ))2

Step 2: θ̂2← argmin
θ

n∑
i=1

(yi − f(xi; θ̂1)︸ ︷︷ ︸
error

−f(xi; θ))2

Tommi Jaakkola, MIT CSAIL 11

Forward fitting cont’d
Simple family: f(x; θ) = wφk(x), θ = {k, w}

• We can fit each new component to reduce the prediction

error; in each iteration we solve the same type of estimation

problem

Step 1: θ̂1← argmin
θ

n∑
i=1

(yi − f(xi; θ))2

Step 2: θ̂2← argmin
θ

n∑
i=1

(yi − f(xi; θ̂1)︸ ︷︷ ︸
error

−f(xi; θ))2

Step 3: . . .

• The resulting combined regression method

f̂(x) = f(x; θ̂1) + . . . + f(x; θ̂m)

has much lower (training) error.

Tommi Jaakkola, MIT CSAIL 12

Forward fitting: example
f(x; θ) = wxk, where θ = {w, k}.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−6

−4

−2

0

2

4

6

8

deg=1, w=2.08
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1

0

1

2

3

4

5

6

7

8

deg=2, w=0.95

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1

0

1

2

3

4

5

6

7

8

deg=5, w=−0.00
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1

0

1

2

3

4

5

6

7

8

deg=1, w=0.02

Tommi Jaakkola, MIT CSAIL 13

Combination of classifiers
• We can combine simple “weak” classifiers to produce a

single “strong” classifier in a manner similar to the regression

models:

hm(x) = h(x; θ1) + . . . + h(x; θm)

where the predicted label for x is the sign of hm(x).

• If each component classifier returns only ±1 it is beneficial

to allow some of them to have more “votes” than others:

hm(x) = α1 h(x; θ1) + . . . + αm h(x; θm)

where the (non-negative) votes αi can be used to emphasize

components that are more reliable than others

Tommi Jaakkola, MIT CSAIL 14

Components: decision stumps
• Consider the following simple family of component classifiers

generating ±1 labels:

h(x; θ) = sign(w1 xk − w0)

where θ = {k, w1, w0}. These are called decision stumps.

• Each decision stump pays attention to only a single

component of the input vector

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1

−0.5

0

0.5

1

1.5

Tommi Jaakkola, MIT CSAIL 15

Combination of classifiers cont’d
• We need to define a convenient loss function so as to be able

to train each new component h(x; θ) (and the corresponding

votes) in a simple modular fashion

hm(x) = α1h(x; θ1) + . . . + αmh(x; θm)

• There are many options:

– logistic (negative log-probability)

− log P (y|x, θ1, . . . , θm, α1, . . . , αm) = − log g(y hm(x))

where g(·) is the logistic function.

– simple exponential

exp{−y hm(x) }

Tommi Jaakkola, MIT CSAIL 16

Modularity and loss
• The empirical exponential loss is “modular”:

n∑
i=1

exp{−yihm(xi) }

=
n∑

i=1

exp{−yihm−1(xi)− yiαmh(xi; θm) }

Tommi Jaakkola, MIT CSAIL 17

Modularity and loss
• The empirical exponential loss is “modular”:

n∑
i=1

exp{−yihm(xi) }

=
n∑

i=1

exp{−yihm−1(xi)− yiαmh(xi; θm) }

=
n∑

i=1

exp{−yihm−1(xi)}︸ ︷︷ ︸
fixed at stage m

exp{−yiαmh(xi; θm) }

Tommi Jaakkola, MIT CSAIL 18

Modularity and loss
• The empirical exponential loss is “modular”:

n∑
i=1

exp{−yihm(xi) }

=
n∑

i=1

exp{−yihm−1(xi)− yiαmh(xi; θm) }

=
n∑

i=1

exp{−yihm−1(xi)}︸ ︷︷ ︸
fixed at stage m

exp{−yiαmh(xi; θm) }

=
n∑

i=1

W
(m−1)
i exp{−yiαmh(xi; θm) }

The combined classifier based on m− 1 iterations defines a

weighted loss criterion for the next simple classifier to add

Tommi Jaakkola, MIT CSAIL 19

Empirical exponential loss cont’d
• We can further simplify the estimation criterion for the new

component classifiers

When αm ≈ 0 (low confidence votes)

exp{−yiαmh(xi; θm) } ≈ 1− yiαmh(xi; θm)

and our empirical loss criterion reduces to

≈
n∑

i=1

W
(m−1)
i (1− yiαmh(xi; θm)) =

=
n∑

i=1

W
(m−1)
i − αm

(
n∑

i=1

W
(m−1)
i yih(xi; θm)

)
So we can choose each new component classifier to optimize

a weighted classification error

Tommi Jaakkola, MIT CSAIL 20

Boosting
• A Boosting algorithm sequentially estimates and combines

classifiers by reweighting training examples (concentrating

on the harder examples)

– each component classifier is presented with a slightly

different problem depending on the weights

• Some preliminaries:

– a set of “weak” binary (±1) classifiers h(x; θ) such as

decision stumps

– normalized weights W̃
(0)
i on the training examples, initially

set to uniform (W̃
(0)
i = 1/n)

Tommi Jaakkola, MIT CSAIL 21

The AdaBoost algorithm
1) At the kth iteration we find (any) classifier h(x; θ̂k) for which

the weighted classification error εk

εk = 0.5− 1
2

(
n∑

i=1

W̃
(k−1)
i yih(xi; θ̂k)

)
is better than chance.

Tommi Jaakkola, MIT CSAIL 22

The AdaBoost algorithm
1) At the kth iteration we find (any) classifier h(x; θ̂k) for which

the weighted classification error εk

εk = 0.5− 1
2

(
n∑

i=1

W̃
(k−1)
i yih(xi; θ̂k)

)
is better than chance.

2) The new component classifier is assigned “votes” based on

its performance

α̂k = 0.5 log((1− εk)/εk)

where α̂k is the minimizer of the weighted loss
n∑

i=1

W̃
(k−1)
i exp{−yiαkh(xi; θ̂k) }

Tommi Jaakkola, MIT CSAIL 23

The AdaBoost algorithm
1) At the kth iteration we find (any) classifier h(x; θ̂k) for which

the weighted classification error εk

εk = 0.5− 1
2

(
n∑

i=1

W̃
(k−1)
i yih(xi; θ̂k)

)
is better than chance.

2) The new component classifier is assigned “votes” based on

its performance

α̂k = 0.5 log((1− εk)/εk)

3) The weights on the training examples are updated according

to (c is chosen so that the new weights W̃
(k)
i sum to one):

W̃
(k)
i = c · W̃ (k−1)

i · exp{−yiα̂kh(xi; θ̂k) }

Tommi Jaakkola, MIT CSAIL 24

Boosting: example

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1

−0.5

0

0.5

1

1.5

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1

−0.5

0

0.5

1

1.5

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1

−0.5

0

0.5

1

1.5

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1

−0.5

0

0.5

1

1.5

Tommi Jaakkola, MIT CSAIL 25

