
Machine learning: lecture 11

Tommi S. Jaakkola

MIT CSAIL

tommi@csail.mit.edu

Topics
• Combination of classifiers: boosting

– decision stumps, reweighting, adaboost

– examples,

– margin and performance

Tommi Jaakkola, MIT CSAIL 2

Review: combination of classifiers
• We can combine multiple “weak” classifiers to produce a

single “strong” classifier:

hm(x) = h(x; θ1) + . . . + h(x; θm)

where the predicted label for x is the sign of the discriminant

function hm(x).

• If each component classifier returns only ±1 it is beneficial

to allow some of them to have more “votes” than others:

hm(x) = α1 h(x; θ1) + . . . + αm h(x; θm)

where the (non-negative) votes αi can be used to emphasize

components that are more reliable than others

• We wish to “modularize” the estimation problem

Tommi Jaakkola, MIT CSAIL 3

Review: decision stumps as weak classifiers
• Consider the following simple family of component classifiers

generating ±1 labels:

h(x; θ) = sign(w1 xk − w0)

where θ = {k, w1, w0}. These are called decision stumps.

• Each decision stump pays attention to only a single

component of the input vector

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1

−0.5

0

0.5

1

1.5

Tommi Jaakkola, MIT CSAIL 4

Review: measure of classification loss
• We need a loss function that permits us to summarize how the

already included components in hm−1(x) affect the training

of a new component αm h(x; θm).

• The exponential loss function

exp{−y hm(x) }

suffices for this purpose. The loss is large when the ±1 label

y disagrees with the sign of the discriminant function

hm(x) = α1 h(x; θ1) + . . . + αm h(x; θm)

Tommi Jaakkola, MIT CSAIL 5

Review: modularity
• The empirical exponential loss is “modular”:

n∑
i=1

exp{−yihm(xi) }

=
n∑

i=1

exp{−yihm−1(xi)− yiαmh(xi; θm) }

=
n∑

i=1

exp{−yihm−1(xi)}︸ ︷︷ ︸
fixed at stage m

exp{−yiαmh(xi; θm) }

=
n∑

i=1

W
(m−1)
i exp{−yiαmh(xi; θm) }

The combined classifier based on m − 1 iterations defines a

weighted loss criterion for the next simple classifier to add

Tommi Jaakkola, MIT CSAIL 6

Enforcing stronger modularity
• We can further simplify the estimation criterion for the new

component classifiers (not the votes)

Rationale: When αm ≈ 0 (low confidence votes)

exp{−yiαmh(xi; θm) } ≈ 1− yiαmh(xi; θm)

and our empirical loss criterion reduces to

≈
n∑

i=1

W
(m−1)
i (1− yiαmh(xi; θm)) =

=
n∑

i=1

W
(m−1)
i − αm

(
n∑

i=1

W
(m−1)
i yih(xi; θm)

)
So we can choose each new component classifier to optimize

a weighted classification error

Tommi Jaakkola, MIT CSAIL 7

Boosting
• A Boosting algorithm sequentially estimates and combines

classifiers by reweighting training examples

– each component classifier is presented with a slightly

different problem depending on the weights

– the weights focus each new component on harder examples

• To get started we need:

– a family of “weak” binary (±1) classifiers h(x; θ) such as

decision stumps

– normalized weights W̃
(0)
i on the training examples, initially

set to be uniform (W̃
(0)
i = 1/n)

Tommi Jaakkola, MIT CSAIL 8

The AdaBoost algorithm
1) At the kth iteration we find any classifier h(x; θ̂k) for which

the weighted classification error εk

εk = 0.5− 1
2

(
n∑

i=1

W̃
(k−1)
i yih(xi; θ̂k)

)
is better than chance.

Tommi Jaakkola, MIT CSAIL 9

The AdaBoost algorithm
1) At the kth iteration we find any classifier h(x; θ̂k) for which

the weighted classification error εk

εk = 0.5− 1
2

(
n∑

i=1

W̃
(k−1)
i yih(xi; θ̂k)

)
is better than chance.

2) The new component classifier is assigned “votes” based on

its performance

α̂k = 0.5 log((1− εk)/εk)

where α̂k minimizes the weighted exponential loss
n∑

i=1

W̃
(k−1)
i exp{−yiαkh(xi; θ̂k) }

Tommi Jaakkola, MIT CSAIL 10

The AdaBoost algorithm
1) At the kth iteration we find any classifier h(x; θ̂k) for which

the weighted classification error εk

εk = 0.5− 1
2

(
n∑

i=1

W̃
(k−1)
i yih(xi; θ̂k)

)
is better than chance.

2) The new component classifier is assigned “votes” based on

its performance

α̂k = 0.5 log((1− εk)/εk)

3) The weights on the training examples are updated according

to (c is chosen so that the new weights W̃
(k)
i sum to one):

W̃
(k)
i = c · W̃ (k−1)

i · exp{−yiα̂kh(xi; θ̂k) }

Tommi Jaakkola, MIT CSAIL 11

Boosting: example

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1

−0.5

0

0.5

1

1.5

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1

−0.5

0

0.5

1

1.5

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1

−0.5

0

0.5

1

1.5

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1

−0.5

0

0.5

1

1.5

Tommi Jaakkola, MIT CSAIL 12

“Typical” performance
• Weighted error of each new component classifier

εk = 0.5− 1
2

(
n∑

i=1

W̃
(k−1)
i yih(xi; θ̂k)

)

0 10 20 30 40 50
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

w
ei

gh
te

d
tra

in
in

g
er

ro
r

number of iterations

Tommi Jaakkola, MIT CSAIL 13

“Typical” performance cont’d
• Training and test errors of the combined classifier

ĥm(x) = α̂1h(x; θ̂1) + . . . + α̂mh(x; θ̂m)

0 10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

number of iterations

tra
in

in
g/

te
st

 e
rr

or
s

• Why should the test error go down after we already have

zero training error?

Tommi Jaakkola, MIT CSAIL 14

AdaBoost and margin
• We can write the combined classifier in a more useful form

by dividing the predictions by the “total number of votes”:

ĥm(x) =
α̂1h(x; θ̂1) + . . . + α̂mh(x; θ̂m)

α̂1 + . . . + α̂m

• This allows us to define a clear notion of “voting margin” that

the combined classifier achieves for each training example:

margin(xi) = yi · ĥm(xi)

The margin lies in [−1, 1] and is negative for all misclassified

examples.

Tommi Jaakkola, MIT CSAIL 15

AdaBoost and margin
• Successive boosting iterations improve the majority vote or

margin for the training examples

margin(xi) = yi

[
α̂1h(xi; θ̂1) + . . . + α̂mh(xi; θ̂m)

α̂1 + . . . + α̂m

]

Tommi Jaakkola, MIT CSAIL 16

Can we improve the combination?
• As a result of running the boosting algorithm for m iterations,

we essentially generate a new feature representation for the

data

φi(x) = h(x; θ̂i), i = 1, . . . ,m

• Perhaps we can do better by separately estimating a new set

of “votes” for each component. In other words, we could

estimate a linear classifier of the form

f(x;α) = α1φ1(x) + . . . αmφm(x)

where each parameter αi can be now any real number (even

negative). The parameters would be estimated jointly rather

than one after the other as in boosting.

Tommi Jaakkola, MIT CSAIL 17

Can we improve the combination?
• We could use SVMs in a postprocessing step to reoptimize

f(x;α) = α1φ1(x) + . . . αmφm(x)

with respect to α1, . . . , αm. This is not necessarily a good

idea.

0 10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

number of iterations

tra
in

in
g/

te
st

 e
rr

or
s

0 10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

number of components

tra
in

in
g/

te
st

 e
rr

or
s

typically

boosting svm postprocessing

Tommi Jaakkola, MIT CSAIL 18

Topics
• Combination of classifiers: boosting

– decision stumps, reweighting, adaboost

– examples,

– margin and performance

• Complexity and model selection

– learning and VC dimension

– structural risk minimization

Tommi Jaakkola, MIT CSAIL 19

