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Topics
• Combination of classifiers: boosting

– decision stumps, reweighting, adaboost

– examples,

– margin and performance
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Review: combination of classifiers
• We can combine multiple “weak” classifiers to produce a

single “strong” classifier:

hm(x) = h(x; θ1) + . . . + h(x; θm)

where the predicted label for x is the sign of the discriminant

function hm(x).

• If each component classifier returns only ±1 it is beneficial

to allow some of them to have more “votes” than others:

hm(x) = α1 h(x; θ1) + . . . + αm h(x; θm)

where the (non-negative) votes αi can be used to emphasize

components that are more reliable than others

• We wish to “modularize” the estimation problem
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Review: decision stumps as weak classifiers
• Consider the following simple family of component classifiers

generating ±1 labels:

h(x; θ) = sign( w1 xk − w0 )

where θ = {k, w1, w0}. These are called decision stumps.

• Each decision stump pays attention to only a single

component of the input vector
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Review: measure of classification loss
• We need a loss function that permits us to summarize how the

already included components in hm−1(x) affect the training

of a new component αm h(x; θm).

• The exponential loss function

exp{−y hm(x) }

suffices for this purpose. The loss is large when the ±1 label

y disagrees with the sign of the discriminant function

hm(x) = α1 h(x; θ1) + . . . + αm h(x; θm)
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Review: modularity
• The empirical exponential loss is “modular”:

n∑
i=1

exp{−yihm(xi) }

=
n∑

i=1

exp{−yihm−1(xi)− yiαmh(xi; θm) }

=
n∑

i=1

exp{−yihm−1(xi)}︸ ︷︷ ︸
fixed at stage m

exp{−yiαmh(xi; θm) }

=
n∑

i=1

W
(m−1)
i exp{−yiαmh(xi; θm) }

The combined classifier based on m − 1 iterations defines a

weighted loss criterion for the next simple classifier to add
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Enforcing stronger modularity
• We can further simplify the estimation criterion for the new

component classifiers (not the votes)

Rationale: When αm ≈ 0 (low confidence votes)

exp{−yiαmh(xi; θm) } ≈ 1− yiαmh(xi; θm)

and our empirical loss criterion reduces to

≈
n∑

i=1

W
(m−1)
i (1− yiαmh(xi; θm)) =

=
n∑

i=1

W
(m−1)
i − αm

(
n∑

i=1

W
(m−1)
i yih(xi; θm)

)
So we can choose each new component classifier to optimize

a weighted classification error
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Boosting
• A Boosting algorithm sequentially estimates and combines

classifiers by reweighting training examples

– each component classifier is presented with a slightly

different problem depending on the weights

– the weights focus each new component on harder examples

• To get started we need:

– a family of “weak” binary (±1) classifiers h(x; θ) such as

decision stumps

– normalized weights W̃
(0)
i on the training examples, initially

set to be uniform (W̃
(0)
i = 1/n)
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The AdaBoost algorithm
1) At the kth iteration we find any classifier h(x; θ̂k) for which

the weighted classification error εk

εk = 0.5− 1
2

(
n∑

i=1

W̃
(k−1)
i yih(xi; θ̂k)

)
is better than chance.

Tommi Jaakkola, MIT CSAIL 9



The AdaBoost algorithm
1) At the kth iteration we find any classifier h(x; θ̂k) for which

the weighted classification error εk

εk = 0.5− 1
2

(
n∑

i=1

W̃
(k−1)
i yih(xi; θ̂k)

)
is better than chance.

2) The new component classifier is assigned “votes” based on

its performance

α̂k = 0.5 log( (1− εk)/εk )

where α̂k minimizes the weighted exponential loss
n∑

i=1

W̃
(k−1)
i exp{−yiαkh(xi; θ̂k) }
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The AdaBoost algorithm
1) At the kth iteration we find any classifier h(x; θ̂k) for which

the weighted classification error εk

εk = 0.5− 1
2

(
n∑

i=1

W̃
(k−1)
i yih(xi; θ̂k)

)
is better than chance.

2) The new component classifier is assigned “votes” based on

its performance

α̂k = 0.5 log( (1− εk)/εk )

3) The weights on the training examples are updated according

to (c is chosen so that the new weights W̃
(k)
i sum to one):

W̃
(k)
i = c · W̃ (k−1)

i · exp{−yiα̂kh(xi; θ̂k) }
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Boosting: example
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“Typical” performance
• Weighted error of each new component classifier

εk = 0.5− 1
2

(
n∑

i=1

W̃
(k−1)
i yih(xi; θ̂k)

)
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“Typical” performance cont’d
• Training and test errors of the combined classifier

ĥm(x) = α̂1h(x; θ̂1) + . . . + α̂mh(x; θ̂m)
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• Why should the test error go down after we already have

zero training error?
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AdaBoost and margin
• We can write the combined classifier in a more useful form

by dividing the predictions by the “total number of votes”:

ĥm(x) =
α̂1h(x; θ̂1) + . . . + α̂mh(x; θ̂m)

α̂1 + . . . + α̂m

• This allows us to define a clear notion of “voting margin” that

the combined classifier achieves for each training example:

margin(xi) = yi · ĥm(xi)

The margin lies in [−1, 1] and is negative for all misclassified

examples.
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AdaBoost and margin
• Successive boosting iterations improve the majority vote or

margin for the training examples

margin(xi) = yi

[
α̂1h(xi; θ̂1) + . . . + α̂mh(xi; θ̂m)

α̂1 + . . . + α̂m

]
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Can we improve the combination?
• As a result of running the boosting algorithm for m iterations,

we essentially generate a new feature representation for the

data

φi(x) = h(x; θ̂i), i = 1, . . . ,m

• Perhaps we can do better by separately estimating a new set

of “votes” for each component. In other words, we could

estimate a linear classifier of the form

f(x;α) = α1φ1(x) + . . . αmφm(x)

where each parameter αi can be now any real number (even

negative). The parameters would be estimated jointly rather

than one after the other as in boosting.
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Can we improve the combination?
• We could use SVMs in a postprocessing step to reoptimize

f(x;α) = α1φ1(x) + . . . αmφm(x)

with respect to α1, . . . , αm. This is not necessarily a good

idea.
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Topics
• Combination of classifiers: boosting

– decision stumps, reweighting, adaboost

– examples,

– margin and performance

• Complexity and model selection

– learning and VC dimension

– structural risk minimization
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