

Machine learning: lecture 11

Tommi S. Jaakkola MIT CSAIL *tommi@csail.mit.edu*

Topics

- Combination of classifiers: boosting
 - decision stumps, reweighting, adaboost
 - examples,
 - margin and performance

Review: combination of classifiers

• We can combine multiple "weak" classifiers to produce a single "strong" classifier:

$$h_m(\mathbf{x}) = h(\mathbf{x}; \theta_1) + \ldots + h(\mathbf{x}; \theta_m)$$

where the predicted label for \mathbf{x} is the sign of the discriminant function $h_m(\mathbf{x})$.

• If each component classifier returns only ± 1 it is beneficial to allow some of them to have more "votes" than others:

$$h_m(\mathbf{x}) = \alpha_1 h(\mathbf{x}; \theta_1) + \ldots + \alpha_m h(\mathbf{x}; \theta_m)$$

where the (non-negative) votes α_i can be used to emphasize components that are more reliable than others

• We wish to "modularize" the estimation problem

Review: decision stumps as weak classifiers

• Consider the following simple family of component classifiers generating ± 1 labels:

$$h(\mathbf{x}; \theta) = \operatorname{sign}(w_1 x_k - w_0)$$

where $\theta = \{k, w_1, w_0\}$. These are called *decision stumps*.

 Each decision stump pays attention to only a single component of the input vector

Review: measure of classification loss

- We need a loss function that permits us to summarize how the already included components in h_{m-1}(x) affect the training of a new component α_m h(x; θ_m).
- The exponential loss function

$$\exp\{-y\,h_m(\mathbf{x})\}$$

suffices for this purpose. The loss is large when the ± 1 label y disagrees with the sign of the discriminant function

$$h_m(\mathbf{x}) = \alpha_1 h(\mathbf{x}; \theta_1) + \ldots + \alpha_m h(\mathbf{x}; \theta_m)$$

Review: modularity

• The empirical exponential loss is "modular":

$$\sum_{i=1}^{n} \exp\{-y_i h_m(\mathbf{x}_i)\}$$

$$= \sum_{i=1}^{n} \exp\{-y_i h_{m-1}(\mathbf{x}_i) - y_i \alpha_m h(\mathbf{x}_i; \theta_m)\}$$

$$= \sum_{i=1}^{n} \underbrace{\exp\{-y_i h_{m-1}(\mathbf{x}_i)\}}_{\text{fixed at stage } m} \exp\{-y_i \alpha_m h(\mathbf{x}_i; \theta_m)\}$$

$$= \sum_{i=1}^{n} W_i^{(m-1)} \exp\{-y_i \alpha_m h(\mathbf{x}_i; \theta_m)\}$$

The combined classifier based on m-1 iterations defines a weighted loss criterion for the next simple classifier to add

Enforcing stronger modularity

• We can further simplify the estimation criterion for the new component classifiers (not the votes)

Rationale: When $\alpha_m \approx 0$ (low confidence votes)

$$\exp\{-y_i\alpha_m h(\mathbf{x}_i;\theta_m)\} \approx 1 - y_i\alpha_m h(\mathbf{x}_i;\theta_m)$$

and our empirical loss criterion reduces to

$$\approx \sum_{i=1}^{n} W_{i}^{(m-1)} (1 - y_{i} \alpha_{m} h(\mathbf{x}_{i}; \theta_{m})) =$$
$$= \sum_{i=1}^{n} W_{i}^{(m-1)} - \alpha_{m} \left(\sum_{i=1}^{n} W_{i}^{(m-1)} y_{i} h(\mathbf{x}_{i}; \theta_{m}) \right)$$

So we can choose each new component classifier to optimize a weighted classification error

Boosting

- A Boosting algorithm sequentially estimates and combines classifiers by reweighting training examples
 - each component classifier is presented with a slightly different problem depending on the weights
 - the weights focus each new component on harder examples
- To get started we need:
 - a family of "weak" binary (±1) classifiers $h(\mathbf{x}; \theta)$ such as decision stumps
 - normalized weights $\tilde{W}_i^{(0)}$ on the training examples, initially set to be uniform ($\tilde{W}_i^{(0)} = 1/n$)

The AdaBoost algorithm

1) At the k^{th} iteration we find any classifier $h(\mathbf{x}; \hat{\theta}_k)$ for which the weighted classification error ϵ_k

$$\epsilon_k = 0.5 - \frac{1}{2} \left(\sum_{i=1}^n \tilde{W}_i^{(k-1)} y_i h(\mathbf{x}_i; \hat{\theta}_k) \right)$$

is better than chance.

The AdaBoost algorithm

1) At the k^{th} iteration we find any classifier $h(\mathbf{x}; \hat{\theta}_k)$ for which the weighted classification error ϵ_k

$$\epsilon_k = 0.5 - \frac{1}{2} \left(\sum_{i=1}^n \tilde{W}_i^{(k-1)} y_i h(\mathbf{x}_i; \hat{\theta}_k) \right)$$

is better than chance.

2) The new component classifier is assigned "votes" based on its performance

$$\hat{\alpha}_k = 0.5 \log((1 - \epsilon_k)/\epsilon_k)$$

where $\hat{\alpha}_k$ minimizes the weighted exponential loss

$$\sum_{i=1}^{n} \tilde{W}_{i}^{(k-1)} \exp\{-y_{i}\alpha_{k}h(\mathbf{x}_{i};\hat{\theta}_{k})\}$$

The AdaBoost algorithm

1) At the k^{th} iteration we find any classifier $h(\mathbf{x}; \hat{\theta}_k)$ for which the weighted classification error ϵ_k

$$\epsilon_k = 0.5 - \frac{1}{2} \left(\sum_{i=1}^n \tilde{W}_i^{(k-1)} y_i h(\mathbf{x}_i; \hat{\theta}_k) \right)$$

is better than chance.

2) The new component classifier is assigned "votes" based on its performance

$$\hat{\alpha}_k = 0.5 \log((1 - \epsilon_k)/\epsilon_k)$$

3) The weights on the training examples are updated according to (c is chosen so that the new weights $\tilde{W}_i^{(k)}$ sum to one): $\tilde{W}_i^{(k)} = c \cdot \tilde{W}_i^{(k-1)} \cdot \exp\{-y_i \hat{\alpha}_k h(\mathbf{x}_i; \hat{\theta}_k)\}$

Boosting: example

"Typical" performance

• Weighted error of each new component classifier

"Typical" performance cont'd

• Training and test errors of the *combined classifier*

$$\hat{h}_m(\mathbf{x}) = \hat{\alpha}_1 h(\mathbf{x}; \hat{\theta}_1) + \ldots + \hat{\alpha}_m h(\mathbf{x}; \hat{\theta}_m)$$

• Why should the test error go down after we already have zero training error?

AdaBoost and margin

• We can write the combined classifier in a more useful form by dividing the predictions by the "total number of votes":

$$\hat{h}_m(\mathbf{x}) = \frac{\hat{\alpha}_1 h(\mathbf{x}; \hat{\theta}_1) + \ldots + \hat{\alpha}_m h(\mathbf{x}; \hat{\theta}_m)}{\hat{\alpha}_1 + \ldots + \hat{\alpha}_m}$$

• This allows us to define a clear notion of "voting margin" that the combined classifier achieves for each training example:

$$\mathsf{margin}(\mathbf{x}_i) = y_i \cdot \hat{h}_m(\mathbf{x}_i)$$

The margin lies in [-1, 1] and is negative for all misclassified examples.

AdaBoost and margin

• Successive boosting iterations improve the majority vote or margin for the training examples

margin(
$$\mathbf{x}_i$$
) = $y_i \left[\frac{\hat{\alpha}_1 h(\mathbf{x}_i; \hat{\theta}_1) + \ldots + \hat{\alpha}_m h(\mathbf{x}_i; \hat{\theta}_m)}{\hat{\alpha}_1 + \ldots + \hat{\alpha}_m} \right]$

Can we improve the combination?

 As a result of running the boosting algorithm for m iterations, we essentially generate a new feature representation for the data

$$\phi_i(\mathbf{x}) = h(\mathbf{x}; \hat{\theta}_i), i = 1, \dots, m$$

 Perhaps we can do better by separately estimating a new set of "votes" for each component. In other words, we could estimate a linear classifier of the form

$$f(\mathbf{x}; \alpha) = \alpha_1 \phi_1(\mathbf{x}) + \dots \alpha_m \phi_m(\mathbf{x})$$

where each parameter α_i can be now any real number (even negative). The parameters would be estimated jointly rather than one after the other as in boosting.

Can we improve the combination?

• We could use SVMs in a postprocessing step to reoptimize

$$f(\mathbf{x}; \alpha) = \alpha_1 \phi_1(\mathbf{x}) + \dots \alpha_m \phi_m(\mathbf{x})$$

with respect to $\alpha_1, \ldots, \alpha_m$. This is not necessarily a good idea.

Topics

- Combination of classifiers: boosting
 - decision stumps, reweighting, adaboost
 - examples,
 - margin and performance
- Complexity and model selection
 - learning and VC dimension
 - structural risk minimization