
Machine learning: lecture 12

Tommi S. Jaakkola

MIT CSAIL

tommi@csail.mit.edu



Topics

• Complexity and model selection

– Finite case

– VC dimension

– structural risk minimization
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Why care about “complexity”?
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• We need a quantitative measure of complexity in order to be

able to relate the training error (which we can observe) and

the test error (that we’d like to optimize)
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Simple case: finite number of classifiers

• Suppose we consider only a finite number of classifiers,

h1(x), . . . , hm(x).

• How does the number of classifiers m affect the difference

between training and test errors?
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Simple case: finite number of classifiers

• Suppose we consider only a finite number of classifiers,

h1(x), . . . , hm(x).

• How does the number of classifiers m affect the difference

between training and test errors?

Let’s start by defining

Ên(i) =
1
n

n∑
t=1

= 0, 1︷ ︸︸ ︷
Loss(yt, hi(xt)) = empirical error of hi(x)

E(i) = E(x,y)∼P { Loss(y, hi(x)) } = expected error of hi(x)
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Simple case cont’d

Ên(i) =
1
n

n∑
t=1

Loss(yt, hi(xt)) = empirical error of hi(x)

E(i) = E(x,y)∼P { Loss(y, hi(x)) } = expected error of hi(x)

• If we choose the classifier that minimizes the training error,

în = argmini Ên(i), then

Training error = Ên(̂in)

Test error = E (̂in)
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Simple case cont’d

Ên(i) =
1
n

n∑
t=1

Loss(yt, hi(xt)) = empirical error of hi(x)

E(i) = E(x,y)∼P { Loss(y, hi(x)) } = expected error of hi(x)

• If we choose the classifier that minimizes the training error,

în = argmini Ên(i), then

Training error = Ên(̂in)

Test error = E (̂in)

• The training and test errors are necessarily close if

|Ên(i)− E(i)| ≤ ε, for all i = 1, . . . ,m
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Simple case cont’d

• We’d like to evaluate the probability that the training error

deviates more than ε from the corresponding test error:

P
(
∃ i : |Ên(i)− E(i)| > ε

)
where the probability is over the choice of the training set.
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Simple case cont’d

• We’d like to evaluate the probability that the training error

deviates more than ε from the corresponding test error:

P
(
∃ i : |Ên(i)− E(i)| > ε

)
where the probability is over the choice of the training set.

By using the fact that P (A or B) ≤ P (A) + P (B) we get

P
(
∃ i : |Ên(i)− E(i)| > ε

)
≤

m∑
i=1

P
(
|Ên(i)− E(i)| > ε

)
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Simple case cont’d

• We’d like to evaluate the probability that the training error

deviates more than ε from the corresponding test error:

P
(
∃ i : |Ên(i)− E(i)| > ε

)
where the probability is over the choice of the training set.

By using the fact that P (A or B) ≤ P (A) + P (B) we get

P
(
∃ i : |Ên(i)− E(i)| > ε

)
≤

m∑
i=1

P
(
|Ên(i)− E(i)| > ε

)
≤

m∑
i=1

2 exp(−2nε2) (Chernoff)
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Simple case cont’d

• We’d like to evaluate the probability that the training error

deviates more than ε from the corresponding test error:

P
(
∃ i : |Ên(i)− E(i)| > ε

)
where the probability is over the choice of the training set.

By using the fact that P (A or B) ≤ P (A) + P (B) we get

P
(
∃ i : |Ên(i)− E(i)| > ε

)
≤

m∑
i=1

P
(
|Ên(i)− E(i)| > ε

)
≤

m∑
i=1

2 exp(−2nε2) (Chernoff)

= m · 2 exp(−2nε2)
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Simple case cont’d

• We’d like to evaluate the probability that the training error

deviates more than ε from the corresponding test error:

P
(
∃ i : |Ên(i)− E(i)| > ε

)
where the probability is over the choice of the training set.

By using the fact that P (A or B) ≤ P (A) + P (B) we get

P
(
∃ i : |Ên(i)− E(i)| > ε

)
≤

m∑
i=1

P
(
|Ên(i)− E(i)| > ε

)
≤

m∑
i=1

2 exp(−2nε2) (Chernoff)

= m · 2 exp(−2nε2) = δ

where (1− δ) is our “confidence” that the errors are close.
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Simple case cont’d

• We can restate our result in terms of a bound on the expected

error of any classifier in our set.

m · 2 exp(−2nε2) = δ, or ε =

√
1
2n

(log(2m) + log(1/δ))

Theorem: With probability at least 1− δ over the choice of

the training set, for all i = 1, . . . ,m

E(i) ≤ Ên(i) + ε(n, m, δ)

where ε = ε(n, m, δ) given above is a “complexity penalty”.
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Simple case cont’d

• We can restate our result in terms of a bound on the expected

error of any classifier in our set.

m · 2 exp(−2nε2) = δ, or ε =

√
1
2n

(log(2m) + log(1/δ))

Theorem: With probability at least 1− δ over the choice of

the training set, for all i = 1, . . . ,m

E(i) ≤ Ên(i) + ε(n, m, δ)

where ε = ε(n, m, δ) given above is a “complexity penalty”.

• The complexity penalty

– is an increasing function of m

– increases as δ decreases

– decreases as a function of n
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Measures of complexity

• “Complexity” is a measure of a set of classifiers, not any

specific (fixed) classifier

• Many possible measures

– degrees of freedom

– description length

– Vapnik-Chervonenkis (VC) dimension

etc.

Tommi Jaakkola, MIT CSAIL 15



VC-dimension: preliminaries

• A set of classifiers F:
For example, this could be the set of all possible linear

separators, where h ∈ F means that

h(x) = sign
(
w0 + wTx

)
for some values of the parameters w, w0.
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VC-dimension: preliminaries

• Complexity: how many different ways can we label n

training points {x1, . . . ,xn} with classifiers h ∈ F?

In other words, how many distinct binary vectors

[h(x1) h(x2) . . . h(xn)]

do we get by trying each h ∈ F in turn?

[ -1 1 . . . 1 ] h1

[ 1 -1 . . . 1 ] h2

. . .
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VC-dimension: shattering

• A set of classifiers F shatters n points {x1, . . . ,xn} if

[h(x1) h(x2) . . . h(xn)], h ∈ F

generates all 2n distinct labelings.

• Example: linear decision boundaries shatter (any) 3 points

in 2D
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VC-dimension: shattering cont’d

• We cannot shatter 4 points in 2D with linear separators

For example, the following labeling

x

x

x

x

+ -

+-

cannot be produced with any linear separator

• More generally: the set of all d-dimensional linear separators

can shatter exactly d + 1 points

• Definition: The VC-dimension of a set of classifiers F is the

number of points F can shatter
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Learning and VC-dimension

• We don’t really learn anything until after we have more than

dV C training examples
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• The number of labelings that the set of classifiers can

generate over n points increases sub-exponentially only after

n > dV C (in this case dV C = 100)
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Learning and VC-dimension

• Let dV C be the VC-dimension of our set of classifiers F .

Theorem: With probability at least 1− δ over the choice of

the training set, for all h ∈ F

E(h) ≤ Ên(h) + ε(n, dV C, δ)

where

ε(n, dV C, δ) =

√
dV C(log(2n/dV C) + 1) + log(1/(4δ))

n
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Complexity and margin

• The number of possible labelings of points with large margin

can be dramatically less than the (basic) VC-dimension
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• The set of separating hyperplaces which attain margin γ

or better for examples within a sphere of radius R has

VC-dimension bounded by dV C(γ) ≤ R2/γ2

Tommi Jaakkola, MIT CSAIL 22



Model selection

• We try to find the model with the best balance of complexity

and the fit to the training data

• Ideally, we would select a model from a nested sequence of

models of increasing complexity (VC-dimension)

Model 1 d1

Model 2 d2

Model 3 d3

where d1 ≤ d2 ≤ d3 ≤ . . .

• The model selection criterion is: find the model class that

achieves the lowest upper bound on the expected loss

Expected error ≤ Training error + Complexity penalty
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Structural risk minimization cont’d

• We choose the model class Fi that minimizes the upper

bound on the expected error:

E(ĥi) ≤ Ên(ĥi) +

√
di(log(2n/di) + 1) + log(1/(4δ))

n

where ĥi is the best classifier from Fi selected on the basis

of the training set.
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Example

• Models of increasing complexity

Model 1 K(x1,x2) = (1 + (xT
1 x2))

Model 2 K(x1,x2) = (1 + (xT
1 x2))2

Model 3 K(x1,x2) = (1 + (xT
1 x2))3

. . . . . .

• These are nested, i.e.,

F1 ⊆ F2 ⊆ F3 ⊆ . . .

where Fk refers to the set of possible decision boundaries

that the model k can represent.

Tommi Jaakkola, MIT CSAIL 25



Structural risk minimization: example
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Structural risk minimization: example cont’d

• Number of training examples n = 50, confidence parameter

δ = 0.05.

Model dV C Empirical fit ε(n, dV C, δ)
1st order 3 0.06 0.5501

2nd order 6 0.06 0.6999

4th order 15 0.04 0.9494

8th order 45 0.02 1.2849

• Structural risk minimization would select the simplest (linear)

model in this case.
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