Machine learning: lecture 15

Tommi S. Jaakkola
MIT AI Lab

tommi@ai.mit.edu
Topics

- Mixture models
 - selecting the number of components
 - non-parametric mixtures
 - conditional mixtures: mixtures of experts
The number of mixture components

• As a simple strategy for selecting the appropriate number of mixture components, we can find \(m \) that minimizes the overall description length:

\[
DL \approx -\log p(\text{data}|\hat{\theta}_m) + \frac{d_m}{2} \log(n)
\]

where \(n \) is the number of training points, \(\hat{\theta}_m \) are the maximum likelihood parameters for the \(m \)-component mixture, and \(d_m \) is the (effective) number of parameters in the \(m \)-mixture.

• This asymptotic approximation is also known as BIC (Bayesian Information Criterion)
The number of mixture components: example

- Typical cases

\[
\begin{align*}
 m=1, \quad & -\log P(\text{data})=2017.38, \quad \text{penalty}=14.98, \quad \text{DL}=2032.36 \\
 m=2, \quad & -\log P(\text{data})=1712.69, \quad \text{penalty}=32.95, \quad \text{DL}=1745.65 \\
 m=3, \quad & -\log P(\text{data})=1711.40, \quad \text{penalty}=50.93, \quad \text{DL}=1762.32 \\
 m=4, \quad & -\log P(\text{data})=1682.06, \quad \text{penalty}=68.90, \quad \text{DL}=1750.97
\end{align*}
\]
The number of mixture components: example

- The best cases (out of many runs):

```
m=1, -logP(data)=2017.38, penalty=14.98, DL=2032.36
m=2, -logP(data)=1712.69, penalty=32.95, DL=1745.65
m=3, -logP(data)=1678.56, penalty=50.93, DL=1729.49
m=4, -logP(data)=1649.08, penalty=68.90, DL=1717.98
```
Topics

- Mixture models
 - selecting the number of components
 - non-parametric mixtures
 - conditional mixtures: mixtures of experts
Beyond parametric density models

- More mixture densities

- We can approximate almost any distribution by including more and more components in the mixture model

\[
p(x|\theta) = \sum_{j=1}^{m} p_j p(x|\mu_j, \Sigma_j)
\]
Non-parametric densities

- We can even introduce one mixture component (Gaussian) per training example

\[
\hat{p}(x; \sigma^2) = \frac{1}{n} \sum_{i=1}^{n} p(x|x_i, \sigma^2 I)
\]

where \(n \) is the number of examples.

Here the covariances are all equal and spherical; the single parameter \(\sigma^2 \) controls the smoothness of the resulting density estimate.
1-dim case: Parzen windows

- We place a smooth Gaussian (or other) bump on each training example

\[
\hat{p}_n(x; \sigma) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{\sigma} K \left(\frac{x - x_i}{\sigma} \right),
\]

where the “kernel function” is

\[
K(z) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^2}{2}\right)
\]

(very different from SVM kernels).

\[n = 50, \sigma = 0.02\]
Parzen windows: variable kernel width

- We can also set the kernel width locally

k-nearest neighbor choice: let d_{ik} be the distance from x_i to its k^{th} nearest neighbor

$$
\hat{p}_n(x; k) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{d_{ik}} K \left(\frac{x - x_i}{d_{ik}} \right)
$$

- The estimate is smoother where there are only few data points
Parzen windows: optimal kernel width

- We still have to set the kernel width σ or the number of nearest neighbors k

- A practical solution: cross-validation

Let $\hat{p}_{-i}(x; \sigma)$ be a parzen windows density estimate constructed on the basis of $n - 1$ training examples leaving out x_i.

We select σ (or similarly k) that maximizes the leave-one-out log-likelihood

$$CV(\sigma) = \sum_{i=1}^{n} \log \hat{p}_{-i}(x_i; \sigma)$$
Parzen windows: multi-dimensional case

- Multi-dimensional Parzen windows estimate:

\[
\hat{p}_{\text{parzen}}(x) = \frac{1}{n} \sum_{i=1}^{n} p(x|x_i, \sigma^2 I)
\]

where \(n\) is the number of examples.

- The covariance matrices are all equal and spherical. The single parameter \(\sigma\) controls the smoothness of the density estimate and can be set analogously.
Topics

- Mixture models
 - selecting the number of components
 - non-parametric mixtures
 - conditional mixtures: mixtures of experts
Conditional mixtures

- Many regression or classification problems can be decomposed into smaller (easier) sub problems

- Examples:
 - style in handwritten character recognition
 - dialect/accent in speech recognition
 - etc.

- Each sub-problem could be solved by a specific but relatively simple “expert”

- Unlike in ordinary mixtures, the selection of which expert to rely on must now depend on the context (the input x)
Experts

- Suppose we have several “experts” or component regression models generating conditional Gaussian outputs

\[P(y|x, \theta_i) = N(y; w_i^T x + w_{i0}, \sigma_i^2) \]

where

- mean of \(y \) given \(x \) = \(w_i^T x + w_{i0} \)
- variance of \(y \) given \(x \) = \(\sigma_i^2 \)

\(\theta_i = \{ w_i, w_{i0}, \sigma_i^2 \} \) denotes the parameters of the \(i^{th} \) expert.

- We need to find an appropriate way of allocating tasks to these experts (linear regression models)
Mixtures of experts

Example:

- Here we need a switch or a gating network that selects the appropriate expert (linear regression model) as a function of the input x.
Gating network

• A simple gating network is a probability distribution over the choice of the expert, conditional on the input x

• Example: in case of just two experts (say 0 and 1), the gating network can be a logistic regression model

$$P(\text{expert} = 1|x, v, v_0) = g(v^T x + v_0)$$

where $g(z) = (1 + e^{-z})^{-1}$ is the logistic function.

• When the number of experts $m > 2$, the gating network can be a softmax model

$$P(\text{expert} = j|x, \eta) = \frac{\exp(v_j^T x + v_{j0})}{\sum_{j'=1}^{m}\exp(v_{j'}^T x + v_{j'0})}$$

where $\eta = \{v_1, \ldots, v_m, v_{10}, \ldots, v_{m0}\}$ denotes the parameters of the gating network
Gating network: example divisions

\[P(\text{expert } = j | \mathbf{x}, \eta) = \frac{\exp(\mathbf{v}_j^T \mathbf{x} + v_{j0})}{\sum_{j' = 1}^m \exp(\mathbf{v}_{j'}^T \mathbf{x} + v_{j'0})} \]
Mixtures of experts model

- The distribution over possible outputs y given an input x is a conditional mixture model

$$P(y|x, \theta, \eta) = \sum_{j=1}^{m} P(\text{expert} = j|x, \eta) P(y|x, \theta_j)$$

where η defines the parameters of the gating network (e.g., logistic) and θ_j are the parameters of each expert (e.g., linear regression model).

- The allocation of experts is made conditionally on the input
Estimation of mixtures of experts

- The estimation would be again easy if we knew which expert should account for which training example.

Let $\delta(j|i)$ be indicator functions over the choice of the experts such that $\delta(k|i) = 1$ if expert k was responsible for training example i. If we knew $\delta(j|i)$, then

1. Separately for each expert j: find θ_j that maximize

$$\sum_{i=1}^{n} \delta(j|i) \log P(y_i|x_i, \theta_j)$$

(linear regression based on points “labeled” j)

2. Find η to reproduce the assignments: maximize

$$\sum_{i=1}^{n} \sum_{j=1}^{m} \delta(j|i) \log P(\text{expert} = j|x_i, \eta)$$

Tommi Jaakkola, MIT CSAIL
Estimation of mixtures of experts

- Similarly to mixture models, we now have to evaluate the posterior probability (here given both x_i AND y_i) that the output came from a particular expert:

$$
\hat{p}(j|i) \leftarrow P(\text{expert} = j|x_i, y_i, \eta, \theta) = \frac{P(\text{expert} = j|x_i, \eta) P(y_i|x_i, \theta_j)}{\sum_{j'=1}^{m} P(\text{expert} = j'|x_i, \eta) P(y_i|x_i, \theta_{j'})}
$$
EM for mixtures of experts

E-step: evaluate the posterior assignment probabilities $\hat{p}(j|i)$

M-step(s): separately re-estimate the experts and the gating network based on the posterior assignments:

1. For each expert j: find θ_j that maximize

$$\sum_{i=1}^{n} \hat{p}(j|i) \log P(y_i|x_i, \theta_j)$$

2. For the gating network: find η that maximize

$$\sum_{i=1}^{n} \sum_{j=1}^{m} \hat{p}(j|i) \log P(\text{expert} = j|x_i, \eta)$$
Mixtures of experts: demo