

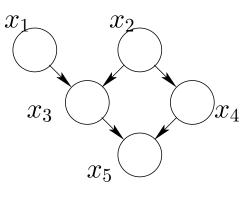
Machine learning: lecture 22

Tommi S. Jaakkola MIT CSAIL *tommi@csail.mit.edu*

Outline

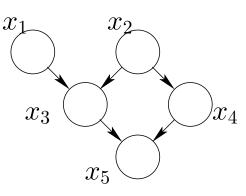
- Exact inference
 - graph operations
 - cliques and potential functions
 - message passing (junction tree) algorithm
- Approximate inference

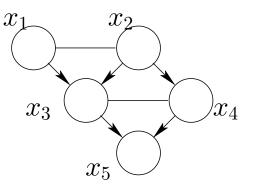
• Moralization



original graph

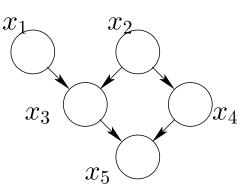
• Moralization

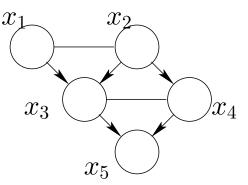


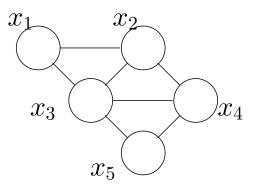


original graph "marry" parents

• Moralization



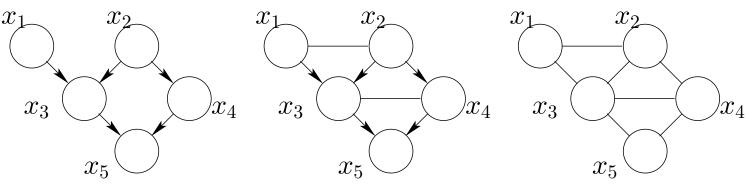




moral graph

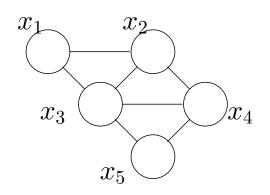
original graph "marry" parents

Moralization



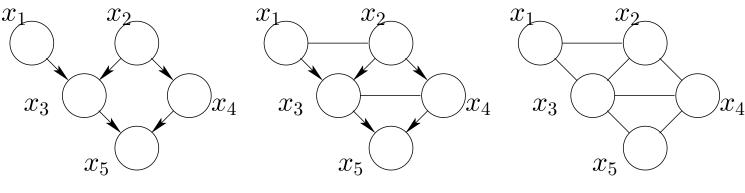
original graph "marry" parents moral graph

• Triangulation (add edges so that any cycle of four or more nodes has a "chord")



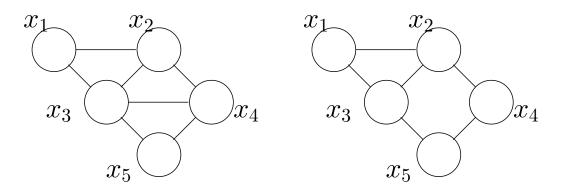
already triangulated

Moralization



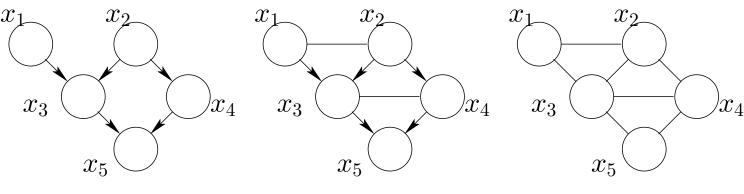
original graph "marry" parents moral graph

 Triangulation (add edges so that any cycle of four or more nodes has a "chord")



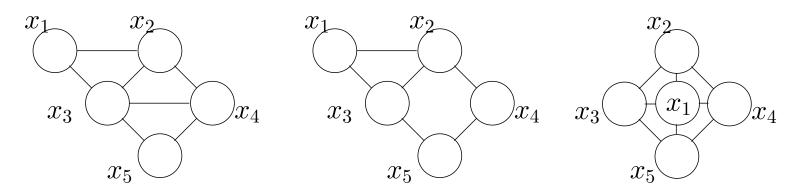
already triangulated not triangulated

Moralization



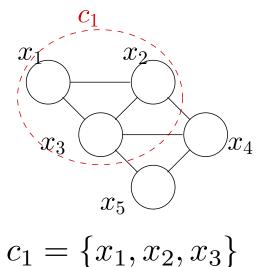
original graph "marry" parents moral graph

 Triangulation (add edges so that any cycle of four or more nodes has a "chord")

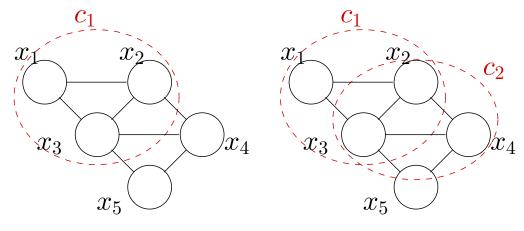


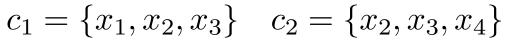
already triangulated not triangulated not triangulated

• Find the maximal cliques of the triangulated graph

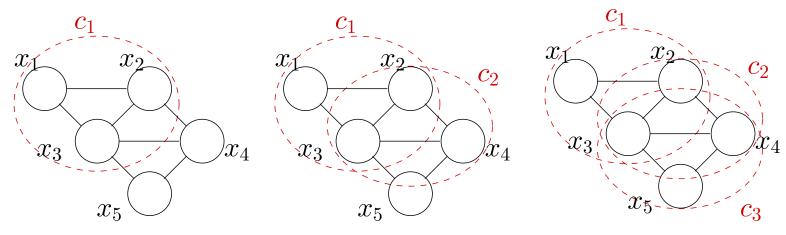


• Find the maximal cliques of the triangulated graph



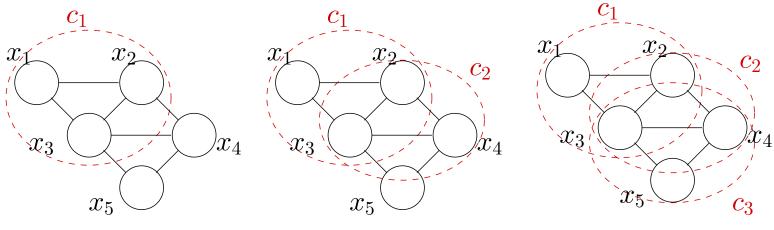


• Find the maximal cliques of the triangulated graph



 $c_1 = \{x_1, x_2, x_3\}$ $c_2 = \{x_2, x_3, x_4\}$ $c_3 = \{x_3, x_4, x_5\}$

• Find the maximal cliques of the triangulated graph



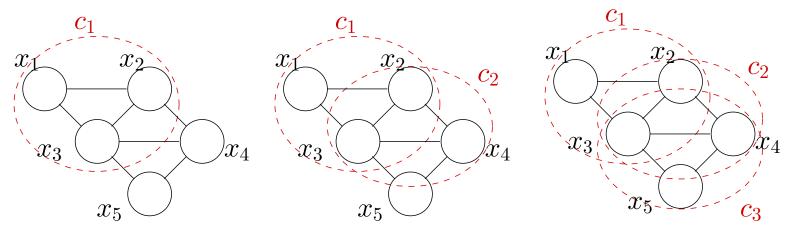
 $c_1 = \{x_1, x_2, x_3\}$ $c_2 = \{x_2, x_3, x_4\}$ $c_3 = \{x_3, x_4, x_5\}$

Theorem: [Hammersley-Clifford] Any distribution consistent with an undirected graph must factor according to the (maximal) cliques in the graph

$$P(\mathbf{x}) = \prod_{c \in \mathcal{C}} \psi_c(\mathbf{x}_c)$$

where \mathbf{x}_c are the set of variables associated with clique c.

• Find the maximal cliques of the triangulated graph

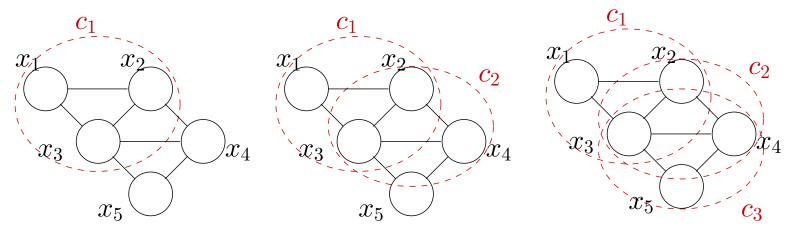


$$c_1 = \{x_1, x_2, x_3\}$$
 $c_2 = \{x_2, x_3, x_4\}$ $c_3 = \{x_3, x_4, x_5\}$

• Clique trees and junction trees

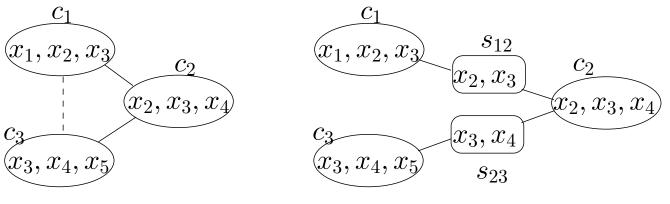


• Find the maximal cliques of the triangulated graph



$$c_1 = \{x_1, x_2, x_3\}$$
 $c_2 = \{x_2, x_3, x_4\}$ $c_3 = \{x_3, x_4, x_5\}$

• Clique trees and junction trees

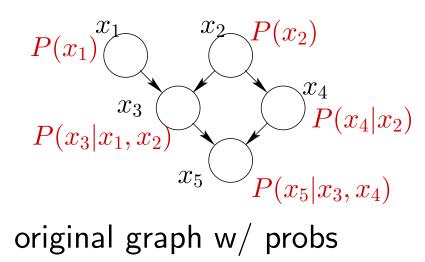


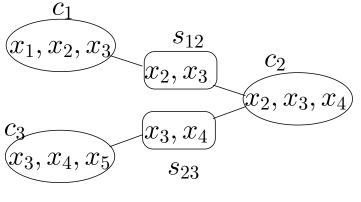
junction tree (with separators)

clique tree

Exact inference: potentials

• Associating graphs and potentials

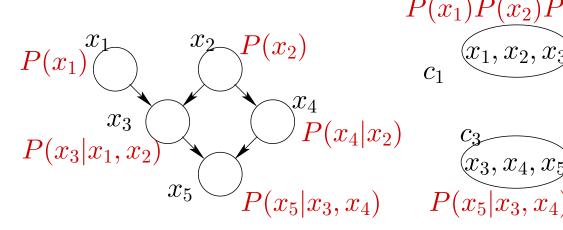


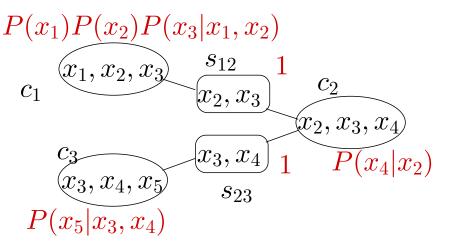


junction tree

Exact inference: potentials

Associating graphs and potentials



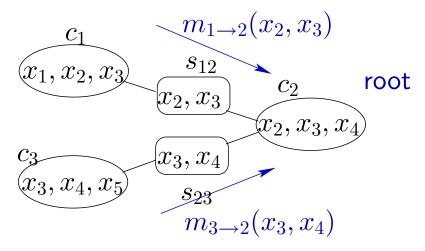


original graph w/ probabilities junction tree w/ probs

$$\begin{split} \psi_{c_1}(x_1, x_2, x_3) &= P(x_1) P(x_2) P(x_3 | x_1, x_2) \\ \psi_{c_2}(x_2, x_3, x_4) &= P(x_4 | x_2) \\ \psi_{c_3}(x_3, x_4, x_5) &= P(x_5 | x_3, x_4) \\ \psi_{s_{12}}(x_2, x_3) &= 1 \quad \text{(separator)} \\ \psi_{s_{23}}(x_3, x_4) &= 1 \quad \text{(separator)} \end{split}$$

Exact inference: message passing

- Select a root clique
- Collect evidence



• Distribute evidence

