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Outline
• Exact inference (quickly)

– message passing in junction trees

• Approximate inference

– belief propagation

– sampling

• Review for the final

– what is important, what is not
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Exact inference: key steps
• Baysian network, moralization, triangulation
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• Cliques, clique graph, and junction tree
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Exact inference: potentials
• Associating graphs and potentials
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P (x1, . . . , x5) =
ψc1(x1, x2, x3)ψc2(x2, x3, x4)ψc3(x3, x4, x5)

ψs12(x2, x3)ψs23(x3, x4)
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Exact inference: message passing
• Select a root clique

• Collect evidence
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Exact inference: message passing
• Collect evidence
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Exact inference: message passing
• Collect evidence
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Evaluate new separators:

ψ′s12
(x2, x3) =

∑
x1

ψc1(x1, x2, x3) = P (x2, x3)

ψ′s23
(x3, x4) =

∑
x5

ψc3(x3, x4, x5) = 1
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Exact inference: message passing
• Collect evidence
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Messages (not explicitly used in the algorithm):

m1→2(x2, x3) =
ψ′s12

(x2, x3)
ψs12(x2, x3)

=
P (x2, x3)

1
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=
1
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Exact inference: message passing
• Collect evidence

x2, x3, x4
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Update clique potentials (based on messages):

ψc2(x2, x3, x4) ←
ψ′s12

(x2, x3)
ψs12(x2, x3)︸ ︷︷ ︸
m1→2(x2,x3)

·
ψ′s23

(x3, x4)
ψs23(x3, x4)

·︸ ︷︷ ︸
m3→2(x3,x4)

ψc2(x2, x3, x4)

= P (x2, x3) · 1 · P (x4|x2) = P (x2, x3, x4)

followed by ψs12 ← ψ′s12
and ψs23 ← ψ′s23
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Exact inference: message passing
• Distribute evidence
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Exact inference: message passing
• Distribute evidence
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Evaluate new separators:

ψ′s12
(x2, x3) =

∑
x4

ψc2(x2, x3, x4) = P (x2, x3)

ψ′s23
(x3, x4) =

∑
x2

ψc2(x2, x3, x4) = P (x3, x4)
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Exact inference: message passing
• Distribute evidence
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Messages (not explicitly used in the algorithm):

m2→1(x2, x3) =
ψ′s12

(x2, x3)
ψs12(x2, x3)

=
P (x2, x3)
P (x2, x3)

= 1

m2→3(x3, x4) =
ψ′s23
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=
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1
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Exact inference: message passing
• Distribute evidence
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Update clique potentials (based on messages):

ψc1(x1, x2, x3) ←
ψ′s12

(x2, x3)
ψs12(x2, x3)

ψc1(x1, x2, x3) = P (x1, x2, x3)

ψc3(x3, x4, x5) ←
ψ′s23

(x3, x4)
ψs23(x3, x4)

· ψc3(x3, x4, x5) = P (x3, x4, x5)

followed by ψs12 ← ψ′s12
and ψs23 ← ψ′s23
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Exact inference
• After the collect and distribute steps the marginal

probabilities are stored locally at the clique potentials (and

the separators)

x2, x3, x4
c3

x1, x2, x3

x3, x4, x5

c2

s23

x2, x3

x3, x4

c1

P (x1, x2, x3)

P (x3, x4, x5)

s12

P (x2, x3, x4)

P (x2, x3)

P (x3, x4)

P (x1, . . . , x5) =
P (x1, x2, x3)P (x2, x3, x4)P (x3, x4, x5)

P (x2, x3)P (x3, x4)

More generally, the resulting potentials would be proportional

to the posterior marginals, e.g., P (x1, x2, x3, data), which

can be easily normalized.
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Outline
• Exact inference (quickly)

– message passing in junction trees

• Approximate inference

– belief propagation

– sampling

• Review for the final

– what is important, what is not
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Approximate inference: motivation
• We cannot solve the medical diagnosis problem(s) with exact

inference algorithms

. . .

. . .

Diseases

Findings

d

f
Findings

Diseases

– the largest clique has over 100 variables (the corresponding

potential function or table would involve more than 2100

elements)
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Approximate inference: belief propagation
• The message passing algorithm is appropriate when the model

is a (clique) tree

– we need a unique path of influence between any (sets of)

variables

• We can still apply the message passing algorithm even if the

model is not a tree (message passing operations are defined

locally)

x1 x2

x4x3

m1→2(x2)

m4→2(x2)

– convergence?

– accuracy?
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Approximate inference: belief propagation

x1 x2

x4x3

m1→2(x2)

m4→2(x2)

– a set of locally consistent messages (fixed point of the

algorithm) always exists

– the accuracy of the resulting marginals related to the length

of the shortest cycle

– stronger guarantees exist for finding most likely

configurations of variables

• Works well in many large scale applications

– decoding turbo (and other) codes, image processing,

molecular networks, protein structure, etc.
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Approximate inference: sampling
x1 x2

x4x3

• If we could draw samples xt = {xt
1, x

t
2, x

t
3, x

t
4} from P (x),

we could easily and accurately evaluate any marginals

P (x1 = 0) ≈ 1
T

T∑
t=1

δ(xt
1, 0)

where δ(xt
1, 0) = 1 whenever xt

1 = 0 and zero otherwise.

• But it is hard to draw samples...
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Simple remedy: importance sampling
• We can instead draw samples from a much simpler

distribution Q(x) (e.g., where the variables may be

independent) and evaluate marginals according to

P (x1 = 0) =
∑
x

P (x)δ(x1, 0)

=
∑
x

Q(x)
P (x)
Q(x)

δ(x1, 0)

≈ 1
T

T∑
t=1

P (xt)
Q(xt)

δ(xt
1, 0)

where the samples xt are now drawn from Q(x).

• But the resulting marginals may not even lie in [0, 1]...
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Likelihood weighted sampling
• A better (but biased) sampling approximation is given by a

likelihood weighted average

P (x1 = 0) ≈
1
T

∑T
t=1

P (xt)
Q(xt)

δ(xt
1, 0)

1
T

∑T
t=1

P (xt)
Q(xt)

• Any factored sampling distribution Q(x) =
∏

iQi(xi) can be

adjusted adaptively on the basis of the marginals computed

so far
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Back to medical diagnosis problem
• Likelihood weighted sampling works... sort of
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The figure shows the overall correlation between the

estimated and exact posterior marginals (in simple cases)
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Outline
• Exact inference (quickly)

– message passing in junction trees

• Approximate inference

– belief propagation

– sampling

• Review for the final

– what is important, what is not
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The final
• General points

– exam is comprehensive, not limited to the second half

– emphasis on concepts, integration

Tommi Jaakkola, MIT CSAIL 24



The final
• Major topics

– regression and classification, additive models

– discriminative and generative classifiers

– estimation, over-fitting, generalization

– regularization, support vector machines

– feature selection, boosting

– complexity, compression, model selection

– mixtures, EM, conditional mixtures

– clustering formulations, methods

– HMMs, algorithms, modeling

– Bayesian networks, graph, inference
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