

Machine learning: lecture 23

Tommi S. Jaakkola MIT CSAIL *tommi@csail.mit.edu*

Outline

- Exact inference (quickly)
 - message passing in junction trees
- Approximate inference
 - belief propagation
 - sampling
- Review for the final
 - what is important, what is not

Exact inference: key steps

• Baysian network, moralization, triangulation

original graph moral graph already triangulated

• Cliques, clique graph, and junction tree

Exact inference: potentials

• Associating graphs and potentials

- Select a root clique
- Collect evidence

• Distribute evidence

• Collect evidence

• Collect evidence

Evaluate new separators:

$$\psi'_{s_{12}}(x_2, x_3) = \sum_{x_1} \psi_{c_1}(x_1, x_2, x_3) = P(x_2, x_3)$$

$$\psi'_{s_{23}}(x_3, x_4) = \sum_{x_5} \psi_{c_3}(x_3, x_4, x_5) = 1$$

Collect evidence

Messages (not explicitly used in the algorithm):

$$m_{1 \to 2}(x_2, x_3) = \frac{\psi'_{s_{12}}(x_2, x_3)}{\psi_{s_{12}}(x_2, x_3)} = \frac{P(x_2, x_3)}{1}$$
$$m_{3 \to 2}(x_3, x_4) = \frac{\psi'_{s_{23}}(x_3, x_4)}{\psi_{s_{23}}(x_3, x_4)} = \frac{1}{1}$$

Collect evidence

Update clique potentials (based on messages):

$$\psi_{c_2}(x_2, x_3, x_4) \leftarrow \underbrace{\psi'_{s_{12}}(x_2, x_3)}_{m_{1 \to 2}(x_2, x_3)} \cdot \underbrace{\psi'_{s_{23}}(x_3, x_4)}_{m_{3 \to 2}(x_3, x_4)} \cdot \psi_{c_2}(x_2, x_3, x_4)$$
$$= P(x_2, x_3) \cdot 1 \cdot P(x_4 | x_2) = P(x_2, x_3, x_4)$$

followed by $\psi_{s_{12}} \leftarrow \psi'_{s_{12}}$ and $\psi_{s_{23}} \leftarrow \psi'_{s_{23}}$

• Distribute evidence

• Distribute evidence

Evaluate new separators:

$$\psi'_{s_{12}}(x_2, x_3) = \sum_{x_4} \psi_{c_2}(x_2, x_3, x_4) = P(x_2, x_3)$$

$$\psi'_{s_{23}}(x_3, x_4) = \sum_{x_2} \psi_{c_2}(x_2, x_3, x_4) = P(x_3, x_4)$$

• Distribute evidence

Messages (not explicitly used in the algorithm):

$$m_{2\to 1}(x_2, x_3) = \frac{\psi'_{s_{12}}(x_2, x_3)}{\psi_{s_{12}}(x_2, x_3)} = \frac{P(x_2, x_3)}{P(x_2, x_3)} = 1$$
$$m_{2\to 3}(x_3, x_4) = \frac{\psi'_{s_{23}}(x_3, x_4)}{\psi_{s_{23}}(x_3, x_4)} = \frac{P(x_3, x_4)}{1}$$

Distribute evidence

Update clique potentials (based on messages):

$$\psi_{c_1}(x_1, x_2, x_3) \leftarrow \frac{\psi'_{s_{12}}(x_2, x_3)}{\psi_{s_{12}}(x_2, x_3)}\psi_{c_1}(x_1, x_2, x_3) = P(x_1, x_2, x_3)$$

$$\psi_{c_3}(x_3, x_4, x_5) \leftarrow \frac{\psi'_{s_{23}}(x_3, x_4)}{\psi_{s_{23}}(x_3, x_4)} \cdot \psi_{c_3}(x_3, x_4, x_5) = P(x_3, x_4, x_5)$$

followed by $\psi_{s_{12}} \leftarrow \psi'_{s_{12}}$ and $\psi_{s_{23}} \leftarrow \psi'_{s_{23}}$

Exact inference

 After the collect and distribute steps the marginal probabilities are stored *locally* at the clique potentials (and the separators)

More generally, the resulting potentials would be proportional to the posterior marginals, e.g., $P(x_1, x_2, x_3, \text{data})$, which can be easily normalized.

Outline

- Exact inference (quickly)
 - message passing in junction trees
- Approximate inference
 - belief propagation
 - sampling
- Review for the final
 - what is important, what is not

Approximate inference: motivation

• We cannot solve the medical diagnosis problem(s) with exact inference algorithms

– the largest clique has over 100 variables (the corresponding potential function or table would involve more than 2^{100} elements)

Approximate inference: belief propagation

- The message passing algorithm is appropriate when the model is a (clique) tree
 - we need a unique path of influence between any (sets of) variables
- We can still apply the message passing algorithm even if the model is not a tree (message passing operations are defined locally)

- convergence?
- accuracy?

Approximate inference: belief propagation

- a set of locally consistent messages (fixed point of the algorithm) always exists
- the accuracy of the resulting marginals related to the length of the shortest cycle
- stronger guarantees exist for finding most likely configurations of variables
- Works well in many large scale applications
 - decoding turbo (and other) codes, image processing, molecular networks, protein structure, etc.

Approximate inference: sampling

• If we could draw samples $\mathbf{x}^t = \{x_1^t, x_2^t, x_3^t, x_4^t\}$ from $P(\mathbf{x})$, we could easily and accurately evaluate any marginals

$$P(x_1 = 0) \approx \frac{1}{T} \sum_{t=1}^{T} \delta(x_1^t, 0)$$

where $\delta(x_1^t, 0) = 1$ whenever $x_1^t = 0$ and zero otherwise.

• But it is hard to draw samples...

Simple remedy: importance sampling

• We can instead draw samples from a much simpler distribution $Q(\mathbf{x})$ (e.g., where the variables may be independent) and evaluate marginals according to

$$P(x_1 = 0) = \sum_{\mathbf{x}} P(\mathbf{x})\delta(x_1, 0)$$
$$= \sum_{\mathbf{x}} Q(\mathbf{x})\frac{P(\mathbf{x})}{Q(\mathbf{x})}\delta(x_1, 0)$$
$$\approx \frac{1}{T}\sum_{t=1}^{T} \frac{P(\mathbf{x}^t)}{Q(\mathbf{x}^t)}\delta(x_1^t, 0)$$

where the samples \mathbf{x}^t are now drawn from $Q(\mathbf{x})$.

• But the resulting marginals may not even lie in [0,1]...

Likelihood weighted sampling

 A better (but biased) sampling approximation is given by a likelihood weighted average

$$P(x_1 = 0) \approx \frac{\frac{1}{T} \sum_{t=1}^{T} \frac{P(\mathbf{x}^t)}{Q(\mathbf{x}^t)} \delta(x_1^t, 0)}{\frac{1}{T} \sum_{t=1}^{T} \frac{P(\mathbf{x}^t)}{Q(\mathbf{x}^t)}}$$

• Any factored sampling distribution $Q(\mathbf{x}) = \prod_i Q_i(x_i)$ can be adjusted adaptively on the basis of the marginals computed so far

Back to medical diagnosis problem

• Likelihood weighted sampling works... sort of

The figure shows the overall correlation between the estimated and exact posterior marginals (in simple cases)

Outline

- Exact inference (quickly)
 - message passing in junction trees
- Approximate inference
 - belief propagation
 - sampling
- Review for the final
 - what is important, what is not

The final

- General points
 - exam is comprehensive, not limited to the second half
 - emphasis on concepts, integration

The final

- Major topics
 - regression and classification, additive models
 - discriminative and generative classifiers
 - estimation, over-fitting, generalization
 - regularization, support vector machines
 - feature selection, boosting
 - complexity, compression, model selection
 - mixtures, EM, conditional mixtures
 - clustering formulations, methods
 - HMMs, algorithms, modeling
 - Bayesian networks, graph, inference