Machine learning: lecture 3

Tommi S. Jaakkola MIT CSAIL tommi@csail.mit.edu

Topics

- Beyond linear regression models
 - Additive regression models, examples
 - generalization and cross-validation
- Statistical regression models
 - model formulation, motivation
 - maximum likelihood estimation

Review: linear regression

A simple linear regression function is given by

$$f(x; \mathbf{w}) = w_0 + w_1 x$$

• We can set the parameters $\mathbf{w} = [w_0, w_1]$, for example, by minimizing the *empirical* or *training* error

training error
$$= \frac{1}{n} \sum_{t=1}^{n} (y_t - w_0 - w_1 x_t)^2$$

 The hope here is that the resulting parameters/linear function has a low "generalization error", i.e., error on the new examples

gen. error =
$$E_{(x,y)\sim P} (y - \hat{w}_0 - \hat{w}_1 x)^2$$

Review: generalization

• The "generalization" error,

$$E_{(x,y)\sim P} (y - \hat{w}_0 - \hat{w}_1 x)^2$$

can be written as a sum of two terms:

1. structural error (error of the best predictor in the class)

$$E_{(x,y)\sim P} (y - w_0^* - w_1^* x)^2$$

$$= \min_{w_0, w_1} E_{(x,y)\sim P} (y - w_0 - w_1 x)^2$$

2. and the approximation error (how well we approximate the best predictor) based on a limited training set

$$E_{(x,y)\sim P}\left((w_0^* + w_1^*x) - (\hat{w}_0 + \hat{w}_1x)\right)^2$$

Beyond simple linear regression

The linear regression functions

$$f: \mathcal{R} \to \mathcal{R}$$
 $f(x; \mathbf{w}) = w_0 + w_1 x$, or
$$f: \mathcal{R}^d \to \mathcal{R}$$
 $f(\mathbf{x}; \mathbf{w}) = w_0 + w_1 x_1 + \ldots + w_d x_d$

are convenient because they are linear in the parameters, not necessarily in the input \mathbf{x} .

 \bullet We can easily generalize these classes of functions to be non-linear functions of the inputs ${\bf x}$ but still linear in the parameters ${\bf w}$

For example: m^{th} order polynomial prediction $f: \mathcal{R} \to \mathcal{R}$

$$f(x; \mathbf{w}) = w_0 + w_1 x + \ldots + w_{m-1} x^{m-1} + w_m x^m$$

Polynomial regression: example

Complexity and overfitting

 With too few training examples our polynomial regression model may achieve zero training error but nevertless has a large generalization error

$$\frac{1}{n} \sum_{t=1}^{n} (y_t - f(x_t; \hat{\mathbf{w}}))^2 \approx 0$$

$$E_{(x,y)\sim P} (y - f(x; \hat{\mathbf{w}}))^2 \gg 0$$

 When the training error no longer bears any relation to the generalization error the function overfits the training data

Cross-validation

 Cross-validation allows us to estimate the generalization error based on training examples alone

For example, the leave-one-out cross-validation error is given by

$$\mathsf{CV} = \frac{1}{n} \sum_{t=1}^{n} \left(y_t - f(x_t; \hat{\mathbf{w}}^{-t}) \right)^2$$

where $\hat{\mathbf{w}}^{-t}$ are the least squares estimates of the parameters \mathbf{w} computed without the t^{th} training example.

Polynomial regression: example cont'd

degree = 5, CV = 6.0 degree = 7, CV = 15.6

Additive models

• More generally, predictions can be based on a linear combination of a set of basis functions (or features) $\{\phi_1(\mathbf{x}), \dots, \phi_m(\mathbf{x})\}$, where each $\phi_i(\mathbf{x}) : \mathcal{R}^d \to \mathcal{R}$, and

$$f(\mathbf{x}; \mathbf{w}) = w_0 + w_1 \phi_1(\mathbf{x}) + \ldots + w_m \phi_m(\mathbf{x})$$

• For example:

If
$$\phi_i(x) = x^i$$
, $i = 1, \ldots, m$, then

$$f(x; \mathbf{w}) = w_0 + w_1 x + \ldots + w_{m-1} x^{m-1} + w_m x^m$$

If
$$m = d$$
, $\phi_i(\mathbf{x}) = x_i$, $i = 1, \dots, d$, then

$$f(\mathbf{x}; \mathbf{w}) = w_0 + w_1 x_1 + \ldots + w_d x_d$$

Additive models cont'd

• The basis functions can capture various (e.g., qualitative) properties of the inputs.

For example: we can try to rate companies based on text descriptions

$$\mathbf{x} = \text{text document (string of words)}$$

$$\phi_i(\mathbf{x}) = \begin{cases} 1 \text{ if word } i \text{ appears in the document} \\ 0 \text{ otherwise} \end{cases}$$

$$f(\mathbf{x}; \mathbf{w}) = w_0 + \sum_{i \in \text{words}} w_i \phi_i(\mathbf{x})$$

Additive models cont'd

- We can also use training examples as "prototypes" and make predictions by comparing each new example to such prototypes.
- The (radial) basis functions (n of them) are now soft indicators of how close the new example is to the corresponding training example:

$$\phi_k(\mathbf{x}) = \exp\{-\frac{1}{2\sigma^2} \|\mathbf{x} - \mathbf{x}_k\|^2\}$$

where \mathbf{x}_k is the k^{th} training example and σ^2 controls how smooth the indicator is.

$$f(\mathbf{x}; \mathbf{w}) = w_0 + w_1 \phi_1(\mathbf{x}) + \ldots + w_n \phi_n(\mathbf{x})$$

(this class of functions depends on the training set and has many parameters; we need to *regularize* them)

Additive models: graphical view

 We can view the additive models graphically in terms of simple "units" and "weights"

• In *neural networks* the basis functions themselves have parameters and are adjustable (cf. prototypes)

Statistical view of linear regression

 In a statistical regression model we model both the function and noise

Observed output = function + noise
$$y = f(\mathbf{x}; \mathbf{w}) + \epsilon$$

where, e.g., $\epsilon \sim N(0, \sigma^2)$.

 Whatever we cannot capture with our chosen family of functions will be interpreted as noise

Statistical view of linear regression

• Our function $f(\mathbf{x}; \mathbf{w})$ here is trying to capture the mean of the observations y given the input \mathbf{x} :

$$E\{y \mid \mathbf{x}, \text{ model}\} = f(\mathbf{x}; \mathbf{w})$$

where $E\{y \mid \mathbf{x}, \text{ model}\}$ is the conditional expectation (mean) of y given x, evaluated according to the model.

Conditional expectation and population minimizer

 If we had no constraints on the regression function and unlimited training data in the previous regression formulation, we would minimize

$$E_{(x,y)\sim P}(y-f(x))^2 = E_{x\sim P_x} \left[E_{y\sim P_{y|x}}(y-f(x))^2 \right]$$

where f(x) can be chosen independently for each x. To find the value of f(x) for each specific x, we can

$$\frac{\partial}{\partial f(x)} E_{y \sim P_{y|x}} (y - f(x))^2 = 2E_{y \sim P_{y|x}} (y - f(x))$$
$$= 2(E\{y|x\} - f(x)) = 0$$

Thus the function we are trying to approximate is

$$f^*(x) = E\{y|x\}$$

Statistical view of linear regression

According to our statistical model

$$y = f(\mathbf{x}; \mathbf{w}) + \epsilon, \ \epsilon \sim N(0, \sigma^2)$$

the outputs y given \mathbf{x} are normally distributed with mean $f(\mathbf{x}; \mathbf{w})$ and variance σ^2 :

$$p(y|\mathbf{x}, \mathbf{w}, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\{-\frac{1}{2\sigma^2}(y - f(\mathbf{x}; \mathbf{w}))^2\}$$

- As a result we can also measure the uncertainty in the predictions, not just the mean
- Loss function? Estimation?

Maximum likelihood estimation

• Given observations $D_n = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$ we find the parameters \mathbf{w} that maximize the likelihood of the outputs

$$L(D_n; \mathbf{w}, \sigma^2) = \prod_{t=1}^n p(y_t | \mathbf{x}_t, \mathbf{w}, \sigma^2)$$

Example: linear function

$$p(y|\mathbf{x}, \mathbf{w}, \sigma^{2}) = \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\{-\frac{1}{2\sigma^{2}}(y - w_{0} - w_{1}x)^{2}\} \xrightarrow{2}$$

(why is this a bad fit according to the likelihood criterion?)

Maximum likelihood estimation

Likelihood of the observed outputs:

$$L(D; \mathbf{w}, \sigma^2) = \prod_{t=1}^{n} P(y_t | \mathbf{x}_t, \mathbf{w}, \sigma^2)$$

 It is often easier (but equivalent) to try to maximize the log-likelihood:

$$l(D; \mathbf{w}, \sigma^2) = \log L(D; \mathbf{w}, \sigma^2) = \sum_{t=1}^n \log P(y_t | \mathbf{x}_t, \mathbf{w}, \sigma^2)$$
$$= \sum_{t=1}^n \left(-\frac{1}{2\sigma^2} (y_t - f(\mathbf{x}_t; \mathbf{w}))^2 - \log \sqrt{2\pi\sigma^2} \right)$$
$$= \left(-\frac{1}{2\sigma^2} \right) \sum_{t=1}^n (y_t - f(\mathbf{x}_t; \mathbf{w}))^2 + \dots$$

Maximum likelihood estimation cont'd

 Our model of the noise in the outputs and the resulting (effective) loss-function in maximum likelihood estimation are intricately related

$$Loss(y, f(\mathbf{x}; \mathbf{w})) = -\log P(y|\mathbf{x}, \mathbf{w}, \sigma^2) + const.$$

Maximum likelihood estimation cont'd

The likelihood of observations

$$L(D; \mathbf{w}, \sigma^2) = \prod_{t=1}^{n} P(y_t | \mathbf{x}_t, \mathbf{w}, \sigma^2)$$

is a generic fitting criterion.

• We can just as easily fit the noise variance σ^2 by maximizing the log-likelihood $l(D; \mathbf{w}, \sigma^2)$ with respect to σ^2

Maximum likelihood estimation cont'd

The likelihood of observations

$$L(D; \mathbf{w}, \sigma^2) = \prod_{t=1}^{n} P(y_t | \mathbf{x}_t, \mathbf{w}, \sigma^2)$$

is a generic fitting criterion.

• We can just as easily fit the noise variance σ^2 by maximizing the log-likelihood $l(D; \mathbf{w}, \sigma^2)$ with respect to σ^2

if $\hat{\mathbf{w}}$ are the maximum likelihood parameters for $f(\mathbf{x}; \mathbf{w})$, then the optimal choice for σ^2 is

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{t=1}^n (y_t - f(\mathbf{x}_t; \hat{\mathbf{w}}))^2$$

i.e., mean squared prediction error.