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Topics

e Beyond linear regression models
— Additive regression models, examples
— generalization and cross-validation

e Statistical regression models
— model formulation, motivation
— maximum likelihood estimation
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Review: linear regression

e A simple linear regression function is given by

flz;w) = wo + wix

e We can set the parameters w = [wg, w1, for example, by
minimizing the empirical or training error

n

1
training error = — g (yt — W — ’wli‘t)z
n
t=1

e The hope here is that the resulting parameters/linear function
has a low “generalization error’, i.e., error on the new
examples

gen. error = B, .y p (y — Wo — W1)?
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Review: generalization
e The “generalization” error,
A A N2
Eay)~p (Y — o — 1)

can be written as a sum of two terms:
1. structural error (error of the best predictor in the class)

E(w,y)wP (y — wE)k - wTI)Q

: 2
= min Ey yop (¥ — wo — wiT)
wo, W1

2. and the approximation error (how well we approximate the
best predictor) based on a limited training set

% % ~ ~ 2
Ey )P ((wo + wiz) — (W + wlx))
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Beyond simple linear regression

e The linear regression functions

f:R—=R f(x;w)=wy+ wix, or
f:RESR f(x;w) = wo + wixy + ... + waxy

are convenient because they are linear in the parameters, not
necessarily in the input x.

e We can easily generalize these classes of functions to be
non-linear functions of the inputs x but still linear in the
parameters w

For example: m!” order polynomial prediction f : R — R

flx;w) =wo+wiz + ... + W1 2™ '+ wpa™
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Polynomial regression: example

degree = 3

2 -1 0 1 2
X

degree = 5 degree = 7
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Complexity and overfitting

e With too few training examples our polynomial regression
model may achieve zero training error but nevertless has a
large generalization error

5

_5’2 -1 0 1 2

e When the training error no longer bears any relation to the
generalization error the function overfits the training data
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Cross-validation

e (ross-validation allows us to estimate the generalization error
based on training examples alone

For example, the leave-one-out
cross-validation error is given by

estimates of the parameters w
computed without the t* training
example.

1 2 |
CV: EZ (yt B f(xt7w t)) S 45 4 05 0 05 1 15 2
t=1 | 6

where w™! are the least squares .

Tommi Jaakkola, MIT Al Lab 8



Polynomial regression: example cont’d

2 -1 0 1 2 2 -1 0 1 2
X

degree = 5, CV = 6.0 degree =7, CV = 15.6
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Additive models

e More generally, predictions can be based on a linear
combination of a set of basis functions (or features)

{p1(X),...,0m(x)}, where each ¢;(x) : R? — R, and
f(x;w) = wo + wi11(X) + . .. + WO (X)

e For example:
If ¢;(x) =2 i=1,...,m, then

flz;w) =wo+wiz + ... + W1 2™ '+ wpa™

It m=d, ¢;(x) =x;,i=1,...,d, then

f(x;w) = wg +wixy + ... + wyxy
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Additive models cont’d

e The basis functions can capture various (e.g., qualitative)
properties of the inputs.

For example: we can try to rate companies based on text
descriptions

x = text document (string of words)
bi(x) = 1 if word ¢ appears in the document
' | 0 otherwise

fx;w) = wo+ Z W; i (X)

iewords
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Additive models cont’d

e We can also use training examples as “prototypes’ and
make predictions by comparing each new example to such
prototypes.

e The (radial) basis functions (n of them) are now soft
indicators of how close the new example is to the
corresponding training example:

1
or(x) = exp{ — 5lx—xull*}

where x;, is the k" training example and o2 controls how
smooth the indicator is.

£ W) = w0+ w13 (X) + - .. + Wy (X)

(this class of functions depends on the training set and has
many parameters; we need to regularize them)
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Additive models: graphical view

e We can view the additive models graphically in terms of
simple “units’ and “weights”

e In neural networks the basis functions themselves have
parameters and are adjustable (cf. prototypes)
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Statistical view of linear regression

e |n a statistical regression model we model both the function
and noise

Observed output = function + noise

y = f(x;w)+e

where, e.g., e ~ N(0,0?).

e Whatever we cannot capture
with our chosen family of
functions will be interpreted as

noise
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Statistical view of linear regression

e Our function f(x;w) here is trying to capture the mean of
the observations y given the input x:

B{y| %, model} = f(x; w)

where E{ y | x, model} is the conditional expectation (mean)
of y given x, evaluated according to the model.

5
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Conditional expectation and population
minimizer
e If we had no constraints on the regression function and

unlimited training data in the previous regression formulation,
we would minimize

Biagynr (4 = [(2))* = Eur, |Byur,,(y— [(2))’

where f(x) can be chosen independently for each x. To find
the value of f(x) for each specific x, we can

0 By (- f@)? = 2B,ep, (v f()

0f ()
= 2(E{ylz} — f(z)) =0
Thus the function we are trying to approximate is

fr(x) = Exylz}
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Statistical view of linear regression
e According to our statistical model
y=f(x;w)+¢€, e~ N(0,0%

the outputs y given x are normally distributed with mean
f(x;w) and variance o

o 1 1 . 5
Py w.0%) =~ exp{ 5 5y~ fxiw))’)

e As a result we can also measure the uncertainty in the
predictions, not just the mean

e |l oss function? Estimation?
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Maximum likelihood estimation

e Given observations D,, = {(x1,¥%1),- -, (Xn,Yn)} we find the
parameters w that maximize the likelihood of the outputs

L(Dn;W702) — H p(yt\xt,w,02)

t=1

Example: linear function

p(ylx, w,0°) =
1 1 L. i
\/W eXp{ —Tﬁ(y — Wo — wlx) } _2 . d

(why is this a bad fit according to the likelihood criterion?)

Tommi Jaakkola, MIT Al Lab 18



Maximum likelihood estimation

Likelihood of the observed outputs:

L(D;w, o P(yi|x¢, w,0°)

||::]:

e It is often easier (but equivalent) to try to maximize the
log-likelihood:

[(D;w,0%) = logL(D;w,0”) =Y log P(y|x;,w,07)
t=1

Z<_21 (ye — f(x; ))2—10g\/m>

t=1

_ (_2L> Fxe W)+ ...
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Maximum likelihood estimation cont’d

e Our model of the noise in the outputs and the resulting
(effective) loss-function in maximum likelihood estimation
are intricately related

Loss(y, f(x;w)) = —log P(y|x,w,0?) 4+ const.
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Maximum likelihood estimation cont’d

e The likelihood of observations
L(D7 W, 02) — H P(yt|xt7 W, 02)
t=1
Is a generic fitting criterion.

e We can just as easily fit the noise variance o? by maximizing
the log-likelihood (D;w, 0?) with respect to o
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Maximum likelihood estimation cont’d

e The likelihood of observations

L(D;W,O'2) — H P(yt|Xt7W702)

t=1
Is a generic fitting criterion.

e We can just as easily fit the noise variance o? by maximizing
the log-likelihood (D;w, 0?) with respect to o

if w are the maximum likelihood parameters for f(x;w),
then the optimal choice for o2 is

n

5= 3~ Fxi W)

t=1

i.e., mean squared prediction error.
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