Topics

- Beyond linear regression models
 - Additive regression models, examples
 - Generalization and cross-validation

- Statistical regression models
 - Model formulation, motivation
 - Maximum likelihood estimation
Review: linear regression

- A simple linear regression function is given by
 \[f(x; \mathbf{w}) = w_0 + w_1 x \]

- We can set the parameters \(\mathbf{w} = [w_0, w_1] \), for example, by minimizing the empirical or training error
 \[
 \text{training error} = \frac{1}{n} \sum_{t=1}^{n} (y_t - w_0 - w_1 x_t)^2
 \]

- The hope here is that the resulting parameters/linear function has a low “generalization error”, i.e., error on the new examples
 \[
 \text{gen. error} = E_{(x,y) \sim P} (y - \hat{w}_0 - \hat{w}_1 x)^2
 \]
The “generalization” error,

\[E(x,y) \sim_P (y - \hat{w}_0 - \hat{w}_1 x)^2 \]

can be written as a sum of two terms:

1. structural error (error of the best predictor in the class)

\[E(x,y) \sim_P (y - w^*_0 - w^*_1 x)^2 \]

\[= \min_{w_0, w_1} E(x,y) \sim_P (y - w_0 - w_1 x)^2 \]

2. and the approximation error (how well we approximate the best predictor) based on a limited training set

\[E(x,y) \sim_P ((w^*_0 + w^*_1 x) - (\hat{w}_0 + \hat{w}_1 x))^2 \]
Beyond simple linear regression

• The linear regression functions

\[
f : \mathbb{R} \to \mathbb{R} \quad f(x; \mathbf{w}) = w_0 + w_1 x, \text{ or } \\
f : \mathbb{R}^d \to \mathbb{R} \quad f(x; \mathbf{w}) = w_0 + w_1 x_1 + \ldots + w_d x_d
\]

are convenient because they are linear in the parameters, not necessarily in the input \(x \).

• We can easily generalize these classes of functions to be non-linear functions of the inputs \(x \) but still linear in the parameters \(\mathbf{w} \)

For example: \(m^{th} \) order polynomial prediction \(f : \mathbb{R} \to \mathbb{R} \)

\[
f(x; \mathbf{w}) = w_0 + w_1 x + \ldots + w_{m-1} x^{m-1} + w_m x^m
\]
Polynomial regression: example

degree = 1

degree = 3

degree = 5

degree = 7
Complexity and overfitting

• With too few training examples our polynomial regression model may achieve zero training error but nevertheless has a large generalization error

\[\frac{1}{n} \sum_{t=1}^{n} (y_t - f(x_t; \hat{w}))^2 \approx 0 \]

\[E_{(x,y)\sim P} (y - f(x; \hat{w}))^2 \gg 0 \]

• When the training error no longer bears any relation to the generalization error the function overfits the training data
Cross-validation

- **Cross-validation** allows us to estimate the generalization error based on training examples alone.

For example, the leave-one-out cross-validation error is given by

\[
CV = \frac{1}{n} \sum_{t=1}^{n} (y_t - f(x_t; \hat{w}^{-t}))^2
\]

where \(\hat{w}^{-t} \) are the least squares estimates of the parameters \(w \) computed without the \(t^{th} \) training example.
Polynomial regression: example cont’d

degree = 1, CV = 0.6

degree = 3, CV = 1.5

degree = 5, CV = 6.0

degree = 7, CV = 15.6
Additive models

- More generally, predictions can be based on a linear combination of a set of basis functions (or features) \(\{\phi_1(x), \ldots, \phi_m(x)\} \), where each \(\phi_i(x) : \mathcal{R}^d \rightarrow \mathcal{R} \), and

\[
f(x; w) = w_0 + w_1\phi_1(x) + \ldots + w_m\phi_m(x)
\]

- For example:
 - If \(\phi_i(x) = x^i \), \(i = 1, \ldots, m \), then
 \[
f(x; w) = w_0 + w_1x + \ldots + w_{m-1}x^{m-1} + w_mx^m
\]
 - If \(m = d \), \(\phi_i(x) = x_i \), \(i = 1, \ldots, d \), then
 \[
f(x; w) = w_0 + w_1x_1 + \ldots + w_dx_d
\]
Additive models cont’d

• The basis functions can capture various (e.g., qualitative) properties of the inputs.

For example: we can try to rate companies based on text descriptions

\[x = \text{text document (string of words)} \]

\[\phi_i(x) = \begin{cases}
1 & \text{if word } i \text{ appears in the document} \\
0 & \text{otherwise}
\end{cases} \]

\[f(x; w) = w_0 + \sum_{i \in \text{words}} w_i \phi_i(x) \]
Additive models cont’d

- We can also use training examples as “prototypes” and make predictions by comparing each new example to such prototypes.

- The (radial) basis functions (n of them) are now soft indicators of how close the new example is to the corresponding training example:

$$
\phi_k(x) = \exp\left\{-\frac{1}{2\sigma^2}||x - x_k||^2\right\}
$$

where x_k is the k^{th} training example and σ^2 controls how smooth the indicator is.

$$
f(x; w) = w_0 + w_1\phi_1(x) + \ldots + w_n\phi_n(x)
$$

(this class of functions depends on the training set and has many parameters; we need to regularize them)
Additive models: graphical view

- We can view the additive models graphically in terms of simple “units” and “weights”

\[f(x; w) = \phi_1(x)w_1 + \cdots + \phi_m(x)w_m + w_0 \]

- In neural networks the basis functions themselves have parameters and are adjustable (cf. prototypes)
Statistical view of linear regression

• In a statistical regression model we model both the function and noise

\[
\text{Observed output} = \text{function + noise} \\
y = f(x; w) + \epsilon
\]

where, e.g., \(\epsilon \sim N(0, \sigma^2) \).

• Whatever we cannot capture with our chosen family of functions will be interpreted as noise.
Statistical view of linear regression

- Our function $f(x; w)$ here is trying to capture the mean of the observations y given the input x:

$$E\{ y \mid x, \text{model} \} = f(x; w)$$

where $E\{ y \mid x, \text{model} \}$ is the conditional expectation (mean) of y given x, evaluated according to the model.
Conditional expectation and population minimizer

- If we had no constraints on the regression function and unlimited training data in the previous regression formulation, we would minimize

\[E_{(x,y) \sim P}(y - f(x))^2 = E_{x \sim P_x} \left[E_{y \sim P_y|x}(y - f(x))^2 \right] \]

where \(f(x) \) can be chosen independently for each \(x \). To find the value of \(f(x) \) for each specific \(x \), we can

\[
\frac{\partial}{\partial f(x)} E_{y \sim P_y|x}(y - f(x))^2 = 2E_{y \sim P_y|x}(y - f(x))
\]

\[
= 2(E\{y|x\} - f(x)) = 0
\]

Thus the function we are trying to approximate is

\[f^*(x) = E\{y|x\} \]
Statistical view of linear regression

- According to our statistical model

\[y = f(x; w) + \epsilon, \quad \epsilon \sim N(0, \sigma^2) \]

the outputs \(y \) given \(x \) are normally distributed with mean \(f(x; w) \) and variance \(\sigma^2 \):

\[p(y|x, w, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma^2} \exp\left\{ -\frac{1}{2\sigma^2}(y - f(x; w))^2 \right\} \]

- As a result we can also measure the uncertainty in the predictions, not just the mean

- Loss function? Estimation?
Maximum likelihood estimation

- Given observations $D_n = \{(x_1, y_1), \ldots, (x_n, y_n)\}$ we find the parameters w that maximize the likelihood of the outputs

$$L(D_n; w, \sigma^2) = \prod_{t=1}^{n} p(y_t|x_t, w, \sigma^2)$$

Example: linear function

$$p(y|x, w, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{ -\frac{1}{2\sigma^2}(y - w_0 - w_1x)^2 \right\}$$

(why is this a bad fit according to the likelihood criterion?)
Maximum likelihood estimation

Likelihood of the observed outputs:

\[L(D; \mathbf{w}, \sigma^2) = \prod_{t=1}^{n} P(y_t|\mathbf{x}_t, \mathbf{w}, \sigma^2) \]

• It is often easier (but equivalent) to try to maximize the log-likelihood:

\[l(D; \mathbf{w}, \sigma^2) = \log L(D; \mathbf{w}, \sigma^2) = \sum_{t=1}^{n} \log P(y_t|\mathbf{x}_t, \mathbf{w}, \sigma^2) \]

\[= \sum_{t=1}^{n} \left(-\frac{1}{2\sigma^2}(y_t - f(\mathbf{x}_t; \mathbf{w}))^2 - \log \sqrt{2\pi\sigma^2} \right) \]

\[= \left(-\frac{1}{2\sigma^2} \right) \sum_{t=1}^{n} (y_t - f(\mathbf{x}_t; \mathbf{w}))^2 + \ldots \]
Maximum likelihood estimation cont’d

- Our model of the noise in the outputs and the resulting (effective) loss-function in maximum likelihood estimation are intricately related

\[
\text{Loss}(y, f(x; w)) = - \log P(y|x, w, \sigma^2) + \text{const.}
\]
The likelihood of observations

\[L(D; w, \sigma^2) = \prod_{t=1}^{n} P(y_t | x_t, w, \sigma^2) \]

is a generic fitting criterion.

We can just as easily fit the noise variance \(\sigma^2 \) by maximizing the log-likelihood \(l(D; w, \sigma^2) \) with respect to \(\sigma^2 \).
Maximum likelihood estimation cont’d

- The likelihood of observations

\[L(D; \mathbf{w}, \sigma^2) = \prod_{t=1}^{n} P(y_t | x_t, \mathbf{w}, \sigma^2) \]

is a generic fitting criterion.

- We can just as easily fit the noise variance \(\sigma^2 \) by maximizing the log-likelihood \(l(D; \mathbf{w}, \sigma^2) \) with respect to \(\sigma^2 \) if \(\hat{\mathbf{w}} \) are the maximum likelihood parameters for \(f(x; \mathbf{w}) \), then the optimal choice for \(\sigma^2 \) is

\[\hat{\sigma}^2 = \frac{1}{n} \sum_{t=1}^{n} (y_t - f(x_t; \hat{\mathbf{w}}))^2 \]

i.e., mean squared prediction error.