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Topics

• Logistic regression

– conditional family, quantization

– regularization

– penalized log-likelihood

• Non-probabilistic classification: support vector machine

– linear discrimination

– regularization and “optimal” hyperplane

– optimization via Lagrange multipliers
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Review: logistic regression

• Consider a simple logistic regression model

P (y = 1|x,w) = g(w0 + w1x)

parameterized by w = (w0, w1). We assume that x ∈ [−1, 1]
(or more generally that the input remains bounded).
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parameterized by w = (w0, w1). We assume that x ∈ [−1, 1]
(or more generally that the input remains bounded).

• We view this model as a set of possible conditional

distributions (family of conditionals):
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Tommi Jaakkola, MIT CSAIL 4



Review: logistic regression

• Consider a simple logistic regression model

P (y = 1|x,w) = g(w0 + w1x)

parameterized by w = (w0, w1). We assume that x ∈ [−1, 1]
(or more generally that the input remains bounded).

• We view this model as a set of possible conditional

distributions (family of conditionals):

P (y = 1|x,w) = g(w0 + w1x), w = [w0, w1]T ∈ R2

• It does not matter how the conditionals are parameterized.

For example, the following definition gives rise to the same

family:

P (y = 1|x, w̃) = g
(
w̃0 + (w̃2 − w̃1)x

)
, w̃ = [w̃0, w̃1, w̃2]T ∈ R3
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Review: “choices” in logistic regression

• We are interested in “quantizing” the set of conditionals

P (y = 1|x,w) = g(w0 + w1x), w = [w0, w1]T ∈ R2

by finding a discrete representative set that essentially

captures all the possible conditional distributions we have

in this family.
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Review: “choices” in logistic regression

• We are interested in “quantizing” the set of conditionals

P (y = 1|x,w) = g(w0 + w1x), w = [w0, w1]T ∈ R2

by finding a discrete representative set that essentially

captures all the possible conditional distributions we have

in this family.

• We can represent this discrete set in terms of different

parameter choices w1,w2, . . . ,w∞

• Any conditional P (y|x,w) should be close to one of the

discrete choices P (y|x,wj) in the sense that they make

“similar” predictions for all inputs x ∈ [−1, 1]:

| log P (y = 1|x,w)− log P (y = 1|x,wj)| ≤ ε
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Review: “choices” in logistic regression

• We can view the discrete parameter choices w1,w2, . . . ,w∞
as “centroids” of regions in the parameter space such that

within each region

| log P (y = 1|x,w)− log P (y = 1|x,wj)| ≤ ε

for all x ∈ [−1, 1]
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Review: “choices” in logistic regression

• We can view the discrete parameter choices w1,w2, . . . ,w∞
as “centroids” of regions in the parameter space such that

within each region

| log P (y = 1|x,w)− log P (y = 1|x,wj)| ≤ ε

for all x ∈ [−1, 1]
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• Regularization means limiting the number of choices we have

in this family. For example, we can constrain ‖w‖ ≤ C.
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Regularized logistic regression

• We can regularize the models

by imposing a penalty in

the estimation criterion that

encourages ‖w‖ to remain

small.

Maximum penalized log-

likelihood criterion: −3 −2 −1 0 1 2 3
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l(D;w, λ) =
n∑

i=1

log P (yi|xi,w)− λ

2
‖w‖2

where larger values of λ impose stronger regularization.

• More generally, we can assign penalties based on prior

distributions over the parameters, i.e., add log P (w) in the

log-likelihood criterion.
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Regularized logistic regression

• How do the training/test conditional log-likelihoods behave

as a function of the regularization parameter λ?

l(D;w, λ) =
n∑

i=1

log P (yi|xi,w)− λ

2
‖w‖2
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Topics

• Logistic regression

– conditional family, quantization

– regularization

– penalized log-likelihood

• Non-probabilistic classification: support vector machine

– linear discrimination

– regularization and “optimal” hyperplane

– optimization via Lagrange multipliers
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Non-probabilistic classification

• Consider a binary classification task with y = ±1 labels (not

0/1 as before) and linear discriminant functions:

f(x;w0,w) = w0 + wTx

parameterized by {w0,w}. The label we predict for each

example is given by the sign of the linear function w0+wTx.
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Linear classification

• When training examples are linearly separable we can set

the parameters of a linear classifier so that all the training

examples are classified correctly:

yi [w0 + wTxi] > 0, i = 1, . . . , n

(the sign of the label agrees with the sign of the linear

function w0 + wTx)
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Classification and margin

• We can try to find a unique solution by requiring that the

training examples are classified correctly with a non-zero

“margin”

yi [w0 + wTxi]− 1 ≥ 0, i = 1, . . . , n
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The margin should be defined in terms of the distance from

the boundary to the examples rather than based on the value

of the linear function.
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Margin and slope

• One dimensional example: f(x;w1, w0) = w0 + w1x.

Relevant constraints:

1 [w0 + w1x
+]− 1 ≥ 0

−1 [w0 + w1x
−]− 1 ≥ 0
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Margin and slope

• One dimensional example: f(x;w1, w0) = w0 + w1x.

Relevant constraints:

1 [w0 + w1x
+]− 1 ≥ 0

−1 [w0 + w1x
−]− 1 ≥ 0

We obtain the maximum

separation at the mid point with
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Margin and slope

• One dimensional example: f(x;w1, w0) = w0 + w1x.

Relevant constraints:

1 [w0 + w1x
+]− 1 ≥ 0

−1 [w0 + w1x
−]− 1 ≥ 0

We obtain the maximum

separation at the mid point with
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• This is the only possible solution if we minimize the slope

|w1| subject to the constraints. At the optimum

|w∗1| =
1

|x+ − x−|/2
=

1
margin
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Support vector machine

• We minimize a regularization penalty

‖w‖2/2 = wTw/2 =
d∑

j=1

w2
i /2

subject to the classification

constraints

yi [w0 + wTxi]− 1 ≥ 0,

for i = 1, . . . , n.
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• Analogously to the one dimensional case, the “slope” is again

related to the margin: ‖w∗‖ = 1/margin.
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Support vector machine cont’d

• Only a few of the classification constraints are relevant
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• We could in principle define the solution on the basis of

only a small subset of the training examples called “support

vectors”
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Support vector machine: solution

• We find the optimal setting of {w0,w} by introducing

Lagrange multipliers αi ≥ 0 for the inequality constraints

• We minimize

J(w, w0, α) = ‖w‖2/2−
n∑

i=1

αi

(
yi [w0 + wTxi]− 1

)
with respect to w, w0. {αi} ensure that the classification

constraints are indeed satisfied.

For fixed {αi}

∂

∂w
J(w, w0, α) = w −

n∑
i=1

αiyixi = 0

∂

∂w0
J(w, w0, α) = −

n∑
i=1

αiyi = 0
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Solution

• Substituting the solution w =
∑n

i=1 αiyixi back into the

objective leaves us with the following (dual) optimization

problem over the Lagrange multipliers:

We maximize

J(α) =
n∑

i=1

αi −
1
2

n∑
i,j=1

αiαjyiyj(xT
i xj)

subject to the constraints

αi ≥ 0, i = 1, . . . , n,
n∑

i=1

αiyi = 0

(For non-separable problems we have to limit αi ≤ C)

• This is a quadratic programming problem
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Support vector machines

• Once we have the Lagrange

multipliers {α̂i}, we can

reconstruct the parameter vector

ŵ as a weighted combination of

the training examples:

ŵ =
n∑

i=1

α̂iyixi

where the “weight” α̂i = 0 for all

but the support vectors (SV )
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• The decision boundary has an interpretable form

ŵTx + ŵ0 =
∑

i∈SV

α̂i yi (xT
i x) + ŵ0 = f(x; α̂, ŵ0)
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Interpretation of support vector machines

• To use support vector machines we have to specify only the

inner products (or kernel) between the examples (xT
i x)

• The weights {αi} associated with the training examples are

solved by enforcing the classification constraints.

⇒ sparse solution

• We make decisions by comparing each new example x with

only the support vectors {xi}i∈SV :

ŷ = sign

( ∑
i∈SV

α̂i yi (xT
i x) + ŵ0

)
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