Topics

- Logistic regression
 - conditional family, quantization
 - regularization
 - penalized log-likelihood

- Non-probabilistic classification: support vector machine
 - linear discrimination
 - regularization and “optimal” hyperplane
 - optimization via Lagrange multipliers
Review: logistic regression

- Consider a simple logistic regression model

\[P(y = 1| x, \mathbf{w}) = g(w_0 + w_1 x) \]

parameterized by \(\mathbf{w} = (w_0, w_1) \). We assume that \(x \in [-1, 1] \) (or more generally that the input remains bounded).
Review: logistic regression

- Consider a simple logistic regression model

\[P(y = 1|x, w) = g(w_0 + w_1x) \]

parameterized by \(w = (w_0, w_1) \). We assume that \(x \in [-1, 1] \) (or more generally that the input remains bounded).

- We view this model as a set of possible conditional distributions (family of conditionals):

\[P(y = 1|x, w) = g(w_0 + w_1x), \quad w = [w_0, w_1]^T \in \mathcal{R}^2 \]
Review: logistic regression

- Consider a simple logistic regression model
 \[P(y = 1|x, w) = g(w_0 + w_1 x) \]
 parameterized by \(w = (w_0, w_1) \). We assume that \(x \in [-1, 1] \) (or more generally that the input remains bounded).

- We view this model as a set of possible conditional distributions (family of conditionals):
 \[P(y = 1|x, \mathbf{w}) = g(w_0 + w_1 x), \mathbf{w} = [w_0, w_1]^T \in \mathcal{R}^2 \]

- It does not matter how the conditionals are parameterized. For example, the following definition gives rise to the same family:
 \[P(y = 1|x, \tilde{\mathbf{w}}) = g(\tilde{w}_0 + (\tilde{w}_2 - \tilde{w}_1)x), \tilde{\mathbf{w}} = [\tilde{w}_0, \tilde{w}_1, \tilde{w}_2]^T \in \mathcal{R}^3 \]
Review: “choices” in logistic regression

- We are interested in “quantizing” the set of conditionals

\[P(y = 1|x, \mathbf{w}) = g(w_0 + w_1x), \quad \mathbf{w} = [w_0, w_1]^T \in \mathcal{R}^2 \]

by finding a discrete representative set that essentially captures all the possible conditional distributions we have in this family.
Review: “choices” in logistic regression

- We are interested in “quantizing” the set of conditionals
 \[P(y = 1|x, \mathbf{w}) = g(w_0 + w_1 x), \quad \mathbf{w} = [w_0, w_1]^T \in \mathcal{R}^2 \]
 by finding a discrete representative set that essentially captures all the possible conditional distributions we have in this family.

- We can represent this discrete set in terms of different parameter choices \(\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_\infty \)
Review: “choices” in logistic regression

- We are interested in “quantizing” the set of conditionals

\[P(y = 1|x, \mathbf{w}) = g(w_0 + w_1x), \quad \mathbf{w} = [w_0, w_1]^T \in \mathcal{R}^2 \]

by finding a discrete representative set that essentially captures all the possible conditional distributions we have in this family.

- We can represent this discrete set in terms of different parameter choices \(\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_\infty \)

- Any conditional \(P(y|x, \mathbf{w}) \) should be close to one of the discrete choices \(P(y|x, \mathbf{w}_j) \) in the sense that they make “similar” predictions for all inputs \(x \in [-1, 1] \):

\[| \log P(y = 1|x, \mathbf{w}) - \log P(y = 1|x, \mathbf{w}_j) | \leq \epsilon \]
Review: “choices” in logistic regression

- We can view the discrete parameter choices \(w_1, w_2, \ldots, w_\infty \) as “centroids” of regions in the parameter space such that within each region

\[
| \log P(y = 1|x, w) - \log P(y = 1|x, w_j) | \leq \epsilon
\]

for all \(x \in [-1, 1] \)
Review: “choices” in logistic regression

- We can view the discrete parameter choices $w_1, w_2, \ldots, w_\infty$ as “centroids” of regions in the parameter space such that within each region

$$| \log P(y = 1|x, w) - \log P(y = 1|x, w_j) | \leq \epsilon$$

for all $x \in [-1, 1]$

- Regularization means limiting the number of choices we have in this family. For example, we can constrain $\|w\| \leq C$.
Regularized logistic regression

- We can regularize the models by imposing a penalty in the estimation criterion that encourages $\|w\|$ to remain small.

Maximum penalized log-likelihood criterion:

$$l(D; w, \lambda) = \sum_{i=1}^{n} \log P(y_i|x_i, w) - \frac{\lambda}{2} \|w\|^2$$

where larger values of λ impose stronger regularization.

- More generally, we can assign penalties based on prior distributions over the parameters, i.e., add $\log P(w)$ in the log-likelihood criterion.
Regularized logistic regression

- How do the training/test conditional log-likelihoods behave as a function of the regularization parameter λ?

$$l(D; w, \lambda) = \sum_{i=1}^{n} \log P(y_i | x_i, w) - \frac{\lambda}{2} \|w\|^2$$
Topics

- Logistic regression
 - conditional family, quantization
 - regularization
 - penalized log-likelihood

- Non-probabilistic classification: support vector machine
 - linear discrimination
 - regularization and “optimal” hyperplane
 - optimization via Lagrange multipliers
Non-probabilistic classification

- Consider a binary classification task with $y = \pm 1$ labels (not 0/1 as before) and linear discriminant functions:

\[f(x; w_0, w) = w_0 + w^T x \]

parameterized by $\{w_0, w\}$. The label we predict for each example is given by the sign of the linear function $w_0 + w^T x$.
Linear classification

- When training examples are *linearly separable* we can set the parameters of a linear classifier so that all the training examples are classified correctly:

 $$y_i [w_0 + w^T x_i] > 0, \quad i = 1, \ldots, n$$

 (the sign of the label agrees with the sign of the linear function $w_0 + w^T x$)
Classification and margin

- We can try to find a unique solution by requiring that the training examples are classified correctly with a non-zero "margin"

\[y_i [w_0 + \mathbf{w}^T \mathbf{x}_i] - 1 \geq 0, \ i = 1, \ldots, n \]

The margin should be defined in terms of the distance from the boundary to the examples rather than based on the value of the linear function.

Tommi Jaakkola, MIT CSAIL
Margin and slope

- One dimensional example: \(f(x; w_1, w_0) = w_0 + w_1 x \).

Relevant constraints:

\[
1 [w_0 + w_1 x^+] - 1 \geq 0
\]

\[
-1 [w_0 + w_1 x^-] - 1 \geq 0
\]
Margin and slope

- One dimensional example:
 Relevant constraints:

 \[1 \left[w_0 + w_1 x^+ \right] - 1 \geq 0 \]
 \[-1 \left[w_0 + w_1 x^- \right] - 1 \geq 0 \]

 We obtain the maximum separation at the midpoint with margin \(|x^+ - x^-|/2\).
Margin and slope

• One dimensional example: $f(x; w_1, w_0) = w_0 + w_1 x$.

Relevant constraints:

\[
1 \left[w_0 + w_1 x^+ \right] - 1 \geq 0 \\
-1 \left[w_0 + w_1 x^- \right] - 1 \geq 0
\]

We obtain the maximum separation at the mid point with margin $|x^+ - x^-|/2$.

• This is the only possible solution if we minimize the slope $|w_1|$ subject to the constraints. At the optimum

\[
|w_1^*| = \frac{1}{|x^+ - x^-|/2} = \frac{1}{\text{margin}}
\]
Support vector machine

- We minimize a regularization penalty

\[\|w\|^2/2 = w^T w / 2 = \sum_{j=1}^{d} w_j^2 / 2 \]

subject to the classification constraints

\[y_i [w_0 + w^T x_i] - 1 \geq 0, \]

for \(i = 1, \ldots, n \).

- Analogously to the one dimensional case, the “slope” is again related to the margin: \(\|w^*\| = 1/\text{margin} \).
Support vector machine cont’d

- Only a few of the classification constraints are relevant

- We could in principle define the solution on the basis of only a small subset of the training examples called “support vectors”
Support vector machine: solution

- We find the optimal setting of \(\{w_0, w\} \) by introducing Lagrange multipliers \(\alpha_i \geq 0 \) for the inequality constraints.

- We minimize

\[
J(w, w_0, \alpha) = \|w\|^2/2 - \sum_{i=1}^{n} \alpha_i \left(y_i [w_0 + w^T x_i] - 1 \right)
\]

with respect to \(w, w_0 \). \(\{\alpha_i\} \) ensure that the classification constraints are indeed satisfied.

For fixed \(\{\alpha_i\} \)

\[
\frac{\partial}{\partial w} J(w, w_0, \alpha) = w - \sum_{i=1}^{n} \alpha_i y_i x_i = 0
\]

\[
\frac{\partial}{\partial w_0} J(w, w_0, \alpha) = - \sum_{i=1}^{n} \alpha_i y_i = 0
\]
Solution

• Substituting the solution \(w = \sum_{i=1}^{n} \alpha_i y_i x_i \) back into the objective leaves us with the following (dual) optimization problem over the Lagrange multipliers:

We maximize

\[
J(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j (x_i^T x_j)
\]

subject to the constraints

\[
\alpha_i \geq 0, \quad i = 1, \ldots, n, \quad \sum_{i=1}^{n} \alpha_i y_i = 0
\]

(For non-separable problems we have to limit \(\alpha_i \leq C \))

• This is a quadratic programming problem
Support vector machines

• Once we have the Lagrange multipliers \(\{\hat{\alpha}_i\} \), we can reconstruct the parameter vector \(\hat{w} \) as a weighted combination of the training examples:

\[
\hat{w} = \sum_{i=1}^{n} \hat{\alpha}_i y_i x_i
\]

where the “weight” \(\hat{\alpha}_i = 0 \) for all but the support vectors (SV)

• The decision boundary has an interpretable form

\[
\hat{w}^T x + \hat{w}_0 = \sum_{i \in SV} \hat{\alpha}_i y_i (x_i^T x) + \hat{w}_0 = f(x; \hat{\alpha}, \hat{w}_0)
\]
Interpretation of support vector machines

- To use support vector machines we have to specify only the inner products (or kernel) between the examples \((\mathbf{x}_i^T \mathbf{x})\)
- The weights \(\{\alpha_i\}\) associated with the training examples are solved by enforcing the classification constraints.
 \[\Rightarrow\] sparse solution
- We make decisions by comparing each new example \(\mathbf{x}\) with only the support vectors \(\{\mathbf{x}_i\}_{i \in SV}:\)

\[
\hat{y} = \text{sign} \left(\sum_{i \in SV} \hat{\alpha}_i y_i (\mathbf{x}_i^T \mathbf{x}) + \hat{w}_0 \right)
\]