6.867 Machine learning

Mid-term exam

October 13, 2004

(2 points) Your name and MIT ID:
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1. (6 points) Each plot above claims to represent prediction errors as a function of
x for a trained regression model based on some dataset. Some of these plots could
potentially be prediction errors for linear or quadratic regression models, while oth-
ers couldn’t. The regression models are trained with the least squares estimation
criterion. Please indicate compatible models and plots.

linear regression () () ()
quadratic regression () () ()



Problem 2

Here we explore a regression model where the noise variance is a function of the input
(variance increases as a function of input). Specifically

Y = wr + €

where the noise € is normally distributed with mean 0 and standard deviation ox. The
value of ¢ is assumed known and the input z is restricted to the interval [1,4]. We can

write the model more compactly as y ~ N(wx, o%z?).

If we let x vary within [1,4] and sample outputs y from this model with some w, the
regression plot might look like
10

1. (2 points) How is the ratio y/x distributed for a fixed (constant) =7

2. Suppose we now have n training points and targets {(z1,y1), (T2,%2), .-, (Tn, Yn)},
where each z; is chosen at random from [1, 4] and the corresponding y; is subsequently
sampled from y; ~ N (w*x;, 0?z?) with some true underlying parameter value w*; the
value of o2 is the same as in our model.



(a) (3 points) What is the maximum-likelihood estimate of w as a function of the
training data?

(b) (3 points) What is the variance of this estimator due to the noise in the target
outputs as a function of n and o2 for fixed inputs z1,...,2,? For later utility
(if you omit this answer) you can denote the answer as V(n, o?).

Some potentially useful relations: if 2 ~ N(u,0?), then az ~ N(ap,o0?a?) for a
fixed a. If z; ~ N(uy,0}) and 2o ~ N(uz,03) and they are independent, then
Var(z; + 22) = 0% + 03.

. In sequential active learning we are free to choose the next training input z,., here
within [1,4], for which we will then receive the corresponding noisy target v, 1, sam-
pled from the underlying model. Suppose we already have {(x1,41), (x2,y2), ..., (Tn, Yn) }
and are trying to figure out which x,; to select. The goal is to choose z,.; so as to
help minimize the variance of the predictions f(z;w,) = w,z, where w, is the maxi-
mum likelihood estimate of the parameter w based on the first n training examples.

(a) (2 points) What is the variance of f(z;,,) due to the noise in the training out-
puts as a function of z, n, and o2 given fixed (already chosen) inputs 1, ..., z,?

(b) (2 points) Which z,, 1 would we choose (within [1,4]) if we were to next select
x with the maximum variance of f(z;w,)?

(¢c) (T/F — 2 points) Since the variance of f(z;w,) only depends on z,
n, and o2, we could equally well select the next point at random from
[1,4] and obtain the same reduction in the maximum variance.
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Figure 1: Two possible logistic regression solutions for the three labeled points.

Problem 3

Consider a simple one dimensional logistic regression model
Py = 1]z, w) = g(wo + wiz)

where g(z) = (1 + exp(—2))~! is the logistic function.

1. Figure 3 shows two possible conditional distributions P(y = 1|z, w), viewed as a
function of x, that we can get by changing the parameters w.

(a) (2 points) Please indicate the number of classification errors for each condi-
tional given the labeled examples in the same figure

Conditional (1) makes () classification errors
Conditional (2) makes ( ) classification errors

(b) (3 points) One of the conditionals in Figure 3 corresponds to the
maximum likelihood setting of the parameters w based on the labeled
data in the figure. Which one is the ML solution (1 or 2)?

(c) (2 points) Would adding a regularization penalty |w:|?/2 to the log-
likelihood estimation criterion affect your choice of solution (Y/N)?
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Figure 2: The expected log-likelihood of test labels as a function of the number of training
examples.

2. (4 points) We can estimate the logistic regression parameters more accurately with
more training data. Figure 2 shows the expected log-likelihood of test labels for a
simple logistic regression model as a function of the number of training examples and
labels. Mark in the figure the structural error (SE) and approximation error (AE),
where “error” is measured in terms of log-likelihood.

3. (T/F — 2 points) In general for small training sets, we are likely
to reduce the approximation error by adding a regularization penalty
lwy|?/2 to the log-likelihood criterion.
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Figure 3: Equally likely input configurations in the training set

Problem 4

Here we will look at methods for selecting input features for a logistic regression model
Py = 1|x,w) = g(wo + w11 + was)

The available training examples are very simple, involving only binary valued inputs:

Number of copies x7 x2 ¥y
10 1 1 1
10 0O 1 0
10 1 0 0
10 0 0 1

So, for example, there are 10 copies of x = [1,1]7 in the training set, all labeled y = 1.
The correct label is actually a deterministic function of the two features: y =1 if 21 = x9
and zero otherwise.

We define greedy selection in this context as follows: we start with no features (train only
with wg) and successively try to add new features provided that each addition strictly
improves the training log-likelihood. We use no other stopping criterion.

1. (2 points) Could greedy selection add either z; or xs in this case?
Answer Y or N.

2. (2 points) What is the classification error of the training examples that
we could achieve by including both x; and x5 in the logistic regression
model?




3. (3 points) Suppose we define another possible feature to include, a function of x;
and z5. Which of the following features, if any, would permit us to correctly classify
all the training examples when used in combination with z; and x5 in the logistic
regression model:

() T1 — T2

T1T2

—~
~—

)

—~

4. (2 points) Could the greedy selection method choose this feature as
the first feature to add when the available features are 1, x5 and your

choice of the new feature? Answer Y or N.



Problem 5
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Figure 4: Labeled training examples

Suppose we only have four training examples in two dimensions (see Figure 4):

positive examples at x; = [0,0]7,x, = [2, 2] and
negative examples at x3 = [h, 1], x4 = [0, 3]7.

where we treat h > 0 as a parameter.

1. (2 points) How large can h > 0 be so that the training points are still
linearly separable?

2. (2 points) Does the orientation of the maximum margin decision
boundary change as a function of h when the points are separable?
Answer Y or N.




3. (4 points)What is the margin achieved by the maximum margin boundary as a

function of h?

4. (3 points) Assume that h = 1/2 (as in the figure) and that we can
only observe the xo-component of the input vectors. Without the other

component, the labeled training points reduce to (0,y = 1), (2,y = 1),
(1,y = —1), and (3,y = —1). What is the lowest order p of polynomial
kernel that would allow us to correctly classify these points?
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