
6.867 Machine Learning

Problem Set 1 Solutions

Due date: Monday September 27

Please address all questions and comments about this problem set to 6867-staff@csail.mit.edu.
You will need to use MATLAB for some of the problems but essentially all the code is pro-
vided. If you are not familiar with MATLAB, please consult

http://www.ai.mit.edu/courses/6.867/matlab.html

and the links therein.

Part I: background

Suppose we have a probability distribution or density p(x; θ), where x may be discrete
or continuous depending on the problem we are interested in. θ specifies the parameters
of this distribution such as the mean and the variance of a one dimensional Gaussian.
Different settings of the parameters imply different distributions over x. The available
data, when interpreted as samples x1, . . . , xn from one such distribution, should favor one
setting of the parameters over another. We need a formal criterion for gauging how well any
potential distribution p(·|θ) “explains” or “fits” the data. Since p(x|θ) is the probability of
reproducing any observation x, it seems natural to try to maximize this probability. This
gives rise to the Maximum Likelihood estimation criterion for the parameters θ:

θ̂ML = arg max
θ

L(x1, . . . , xn; θ) = arg max
θ

n∏
i=1

p(xi|θ)

where we have assumed that each data point xi is drawn independently from the same dis-
tribution so that the likelihood of the data is L(x1, . . . , xn; θ) =

∏n
i=1 p(xi; θ). Likelihood is

viewed primarily as a function of the parameters, a function that depends on the data. The
above expression can be quite complicated (depending on the family of distributions we
are considering), and make maximization technically challenging. However, any monoton-
ically increasing function of the likelihood will have the same maxima. One such function
is log-likelihood log L(x1, . . . , xn; θ); taking the log turns the product into a sum, making
derivatives significantly simpler. We will maximize the log-likelihood instead of likelihood.

1

Problem 1: Maximum Likelihood Estimation

Consider a sample of n real numbers x1, x2, . . . , xn drawn independently from the same
distribution that needs to be estimated. Assuming that the underlying distribution belongs
to one of the following parametrized families, the goal is to estimate its parameters (each
family should be treated separately):

Uniform : p(x; a) =
1

a
for x ∈ [0, a], 0 otherwise (1)

Exponential : p(x; η) =
1

η
exp(−x/η), η > 0 (2)

Gaussian : p(x; µ, σ) =
1√

2πσ2
exp

[
−(x− µ)2

2σ2

]
(3)

1. (10 points) Derive the maximum likelihood estimators âML, η̂ML, µ̂ML, σ̂2
ML. The

estimators should be obtained by maximizing the log-likelihood of the dataset under
each of the families, and should be a function of x1, x2, . . . , xn only.

Solution:

(a) The likelihood of the uniform distribution is given by:

L(a) =
n∏

i=1

p(xi; a) =

{
0 if a < maxn

i=1 xi

a−n if a ≥ maxn
i=1 xi

Because a−n is positive and decreasing in a, the parameter that maximizes the
likelihood is the smallest a that is not less than maxn

i=1 xi. Thus

âML =
n

max
i=1

xi

(b) The log-likelihood of the exponential distribution is:

l(η) = −n log η − 1

η

n∑
i=1

xi

In order to maximize it, we compute its derivative:

dl

dη
= −n

η
+

1

η2

n∑
i=1

xi

The derivative vanishes at η = 1
n

∑n
i=1 xi, and is positive for smaller η’s, and

negative for larger. Therefore

η̂ML =
1

n

n∑
i=1

xi

is the parameter that maximizes the likelihood.

2

(c) The log-likelihood of the normal distribution under the dataset is:

l(µ, θ) = −n

2
log(2π)− n log σ − 1

2σ2

n∑
i=1

(xi − µ)2

Because the log-likelihood approaches −∞ if µ → ±∞, σ → 0, or σ → ∞,
the log-likelihood is maximized for some finite (µ̂ML, σ̂ML), σ̂ML > 0. At the
maximum (

∂l

∂µ
(µ̂ML, σ̂ML),

∂l

∂σ
(µ̂ML, σ̂ML)

)
= 0

The first partial derivative ∂l
∂µ

= 1
σ2

∑n
i=1(xi − µ) vanishes at µ̂ML = 1

n

∑n
i=1 xi.

The second partial derivative ∂l
∂σ

= −n/σ + σ−3
∑n

i=1(xi − µ)2 vanishes when
σ2 = 1

n

∑n
i=1(xi − µ)2. Thus:

µ̂ML =
1

n

n∑
i=1

xi

σ̂ML =

√√√√ 1

n

n∑
i=1

(xi − µ̂ML)2

�

To assess how well an estimator θ̂ recovers the underlying value of the parameter θ, we
study its bias and variance. The bias is defined by the expectation of the deviation from
the true value under the true distribution of the sample (X1, X2, . . . , Xn):

bias(θ̂) = EXi∼P (X|θ)

[
θ̂(X1, X2, . . . , Xn)− θ

]
Biased (i.e. with a non-zero bias) estimators systematically under-estimate or over-estimate
the parameter.

The variance of the estimator

var(θ̂) = EXi∼P (X|θ)

[(
θ̂(X1, X2, . . . , Xn)− E

[
θ̂(X1, X2, . . . , Xn)

])2
]

measures the anticipated uncertainty in the estimated value due to the particular selection
(x1, x2, . . . , xn) of the sample. Note that the concepts of bias and variance of estimators
are similar to the concepts of structural and approximation errors, respectively.

Estimators that minimize both bias and variance are preferred, but typically there is a
trade-off between bias and variance.

3

2. (10 points) Show that âML is biased (no need to compute the actual value of the bias),
η̂ML and µ̂ML are unbiased.

Solution:

(a) The expected value of âML is given by:

Ep(x;a) [max{X1, X2, . . . , Xn}] =

∫
0≤x1,x2,...,xn≤a

a−n
(

n
max
i=1

xi

)
dx1dx2 . . . dxn

Since maxn
i=1 xi is always ≤ a, and there are regions of positive probability

on which maxn
i=1 xi is strictly less than a (for example 0 ≤ x1, x2, . . . , xn ≤ a/2

occurs with positive probability), the expected value of maxn
i=1 xi must be strictly

less than a, and the estimator is biased.

(b) First we show that (or simply state it as a property of the exponential distribu-
tion)

Ep(x;η) [X] = η

Proof: ∫∞
0

p(x; η)xdx =
∫∞

0
1
η
e−

x
η xdx = −

∫∞
0

x d
dx

e−
x
η dx =

= −xe−x/η|∞0 +
∫∞

0
e−x/ηdx = −η

∫∞
0

d
dx

e−x/ηdx =
= −ηe−x/η|∞0 = η

It follows that

E [η̂ML] = E

[
1

n

n∑
i=1

Xi

]
=

1

n

n∑
i=1

E [Xi] = η

and the estimator is unbiased.

(c) As in the previous part, for a Gaussian distribution we have

Ep(x;µ,σ) [X] = µ

If follows that

E [µ̂ML] = E

[
1

n

n∑
i=1

Xi

]
=

1

n

n∑
i=1

E [Xi] = µ

and the estimator is unbiased.

�

3. (optional) Show that σ̂2
ML, equal to the sample variance 1

n

∑n
i=1(xi − x̄)2, is biased.

Show that the ML estimator of the variance becomes unbiased after multiplication
with n/(n− 1). Let σ̂2

n−1 be this new estimator.

4

Solution: Let’s compute the bias of the ML estimator of the variance by expanding
the square under the sum:

E
[
σ̂2

ML

]
= E

[
1

n

n∑
i=1

(Xi − X̄)2

]
=

1

n
E

[
n∑

i=1

X2
i − 2X̄

n∑
i=1

Xi + nX̄2

]
=

=
1

n
E

 n∑
i=1

X2
i −

1

n

(
n∑

i=1

Xi

)2
 =

=
1

n
E

[
n∑

i=1

X2
i −

1

n

(
n∑

i=1

X2
i + 2

∑
1≤i<j≤n

XiXj

)]
=

=
1

n

[(
1− 1

n

) n∑
i=1

E
[
X2

i

]
− 2

n

∑
1≤i<j≤n

E [XiXj]

]
Because the n samples are drawn independently, for i 6= j we have E [XiXj] =
E [Xi] E [Xj] = E [X]2 Similarly, E [X2

i] is the same for all i. It follows that:

E
[
σ̂2

ML

]
=

n− 1

n

(
E
[
X2
]
− E [X]2

)
=

n− 1

n
σ2

Thus σ̂2
ML is biased, but E [σ̂2

MLn/(n− 1)] = σ2 is the expectation of an unbiased
estimator. �

4. (optional) A standard way to balance the tradeoff between bias and variance is to

choose estimators of lower mean squared error : MSE(θ̂) = EXi∼P (X|θ)

[
(θ̂ − θ)2

]
.

Show that MSE(θ̂) = bias(θ̂)2+var(θ̂) and that MSE(σ̂2
ML) < MSE(σ̂2

n−1) even though
σ̂2

ML is biased.

Solution: First let’s split MSE(θ̂) into bias and variance:

MSE(θ̂) = EXi∼P (X|θ)

[
(θ̂ − θ)2

]
= E

[(
θ̂ − E

[
θ̂
]

+ E
[
θ̂
]
− θ
)2
]

=

= E

[(
θ̂ − E

[
θ̂
])2
]

+ 2E
[
θ̂ − E

[
θ̂
]] (

E
[
θ̂
]
− θ
)

+
(
E
[
θ̂
]
− θ
)2

The first term in the right-hand side is the definition of var(θ̂); the second term is 0

because E
[
θ̂ − E

[
θ̂
]]

= 0; finally, the third term is bias(θ̂)2. Therefore MSE(θ̂) =

bias(θ̂)2 + var(θ̂).

To prove the second assertion we compute:

MSE(σ̂2
n−1)−MSE(σ̂2

ML) = E
[
(σ̂2

n−1 − σ2)2 − (σ̂2
ML − σ2)2

]
=

= E
[
(σ̂2

n−1)
2
]
− E

[
(σ̂2

ML)2
]
− 2σ2

(
E
[
σ̂2

n−1

]
− E

[
σ̂2

ML

])
=

=

(
n2

(n− 1)2
− 1

)
E
[
(σ̂2

ML)2
]
− 2

n
σ4

5

Thus to show that MSE(σ̂2
n−1) > MSE(σ̂2

ML) we need to prove that:

E
[
(σ̂2

ML)2
]

>
2(n− 1)2

n(2n− 1)
σ4

For a Gaussian distribution we can evaluate E [(σ̂2
ML)2] directly:

E
[
(σ̂2

ML)2
]

= E

 1

n2

(
n∑

i=1

(Xi − X̄)2

)2
 =

=
1

n2
E

(n− 1

n

n∑
i=1

X2
i −

2

n

∑
1≤i<j≤n

XiXj

)2
 =

=
1

n3

{
(n− 1)2E

[
X4
]
+
[
2(n− 1) + (n− 1)3

]
E
[
X2
]2

+

+ (n− 1)(n− 2)(n− 3)E [X]4 − 2(n− 1)(n− 2)(n− 3)E
[
X2
]
E [X]2−

− 4(n− 1)2E
[
X3
]
E [X]

}
Because X is normal of mean µ and variance σ2, we have

E [X] = µ

E
[
X2
]

= µ2 + σ2

E
[
X3
]

= µ3 + 3µσ2

E
[
X4
]

= µ4 + 6µ2σ2 + 3σ4

It follows that

E
[
(σ̂2

ML)2
]

=

(
1− 1

n2

)
σ4

It is easy to verify that 1 − 1/n2 > 2(n − 1)2/(n(2n − 1)) for all n > 1, therefore
MSE(σ̂2

n−1) > MSE(σ̂2
ML). �

Problem 2: Maximum A-Posteriori Estimation

We want to determine the bias of an unfair coin for “heads” or “tails” from observing the
outcome of a series of tosses. We model the coin by a single parameter θ that represents
the probability of tossing heads.

Given n independent observed tosses D = {x1, . . . , xn} out of which nH are “heads”, the
likelihood function is:

p(D|θ) = θnH (1− θ)n−nH

6

1. (5 points) Show that θ̂ML = nH/n. Thus if we toss the coin only once and we see
“tails” (n = 1 and nH = 0), according to maximum likelihood flipping the coin should
always result in “tails”.

Solution: To calculate θ̂ML we maximize on [0, 1] the logarithm of the likelihood:

l(θ) = nH log θ + (n− nH) log(1− θ)

We compute the derivative of the log-likelihood:

dl

dθ
=

nH

θ
− n− nH

1− θ

and solve for its zeros:
nH

θ
=

n− nH

1− θ
⇒ θ =

nH

n

If 0 < nH < n then l(θ) → −∞ if θ → 0 or θ → 1. It follows that the maximum is
achieved on (0, 1) and θ̂ML = nH/n. The special cases nH = 0 and nH = n result in
the same formula for the estimator.

Alternatively, one can apply Jensen’s inequality on the concave logarithm:

nH

n
log

θ

nH

+
n− nH

n
log

(
1− θ

n− nH

)
≤ log

[
nH

n

θ

nH

+
n− nH

n

1− θ

n− nH

]
= log

1

n

with equality when
nH

θ
=

n− nH

1− θ

�

While the maximum likelihood estimator is accurate on large training samples, if data is
very scarce the estimated value is not that meaningful (on small samples the variance of
the estimator is very high and it overfits easily). In contrast, in Maximum A-Posteriori
(MAP) estimation we compensate for the lack of information due to limited observations
with an a priori preference on the parameters based on prior knowledge we might have.
In the case of the coin toss for instance, even without seeing any tosses we can assume the
coin should be able to show both “heads” and “tails” (θ 6= 0).

We express the prior preference/knowledge about θ by a distribution p(θ) (the prior). As-
suming that θ and the observed sample are characterized by an underlying joint probability
p(θ,D), we can use the Bayes rule to express our adjusted belief about the parameters after
observing the trials (the posterior):

p(θ|D) =
p(D|θ)p(θ)

p(D)

7

where p(D) =
∫

p(D|θ′)p(θ′)dθ′ normalizes the posterior. Maximization of the posterior
distribution gives rise to the Maximum A-Posteriori (MAP) estimate of the parameters:

θ̂MAP = arg max
θ

p(θ|D) = arg max
θ

p(D|θ)p(θ)

As in maximum likelihood, to compute the MAP estimate it is often easier to maximize
the logarithm log p(θ) + log p(D|θ).
For the coin toss we will consider separately each of the following priors:

Discrete : p1(θ) =

0.5 if θ = 0.5
0.5 if θ = 0.4
0 otherwise

(4)

Beta : p2(θ) =
1

Z
θα−1(1− θ)β−1 (5)

Here α and β are hyperparameters that should be given, not estimated, and Z is a normal-
ization constant needed to make p2(θ) integrate to 1 whose actual value is not important.

2. (10 points) Prior p1(θ) translates into a strong belief that the coin is either fair, or
biased towards “tails” with a “heads” probability of 0.4. Express the MAP estimate
θ̂1

MAP under this prior as a function of nH/n.

Solution: Since the prior assigns positive probability only to θ = 0.4 or θ = 0.5, to
maximize the posterior we need to compare only two quantities:

θ̂MAP = arg max
θ∈{0.4,0.5}

θnH (1− θ)n−nH0.5

Thus θ̂MAP = 0.5 when

0.4nH0.6n−nH < 0.5nH0.5n−nH or

0.4nH/n0.61−nH/n < 0.5
nH

n
log 0.4 +

(
1− nH

n

)
log 0.6 < log 0.0.5

log
0.6

0.5
<

nH

n
log

0.6

0.4

It follows that the maximum-a-posteriori estimate is given by

θ̂MAP =

{
0.4 if nH/n < log 1.2/ log 1.5
0.5 if nH/n > log 1.2/ log 1.5

The boundary case nH/n = log 1.2/ log 1.5 never occurs because the right-hand side
is irrational. �

8

3. (10 points) The Beta prior expresses the belief that θ is likely to be near α/(α + β).
The larger α + β is, the more peaked the prior, and the stronger the bias that θ
is close to α/(α + β). Derive θ̂2

MAP under the Beta prior and show that when n
approaches infinity the MAP estimate approaches the ML estimate, thus the prior
becomes irrelevant given a large number of observations.

Solution: The MAP estimate maximizes the following posterior:

θ̂MAP = arg max
θ∈[0,1]

θnH+α−1(1− θ)n−nH+β−1

Note that the posterior is identical to the likelihood of the coin after observing a
series of exactly nH + α − 1 heads out of a total of n + α + β − 2 tosses. We have
already derived the ML estimator in Part 1, therefore:

θ̂MAP =
nH + α− 1

n + α + β − 2

As n →∞ we have:

lim
n→∞

θ̂MAP

θ̂ML

= lim
n→∞

1 + α−1
nH

1 + α+β−2
n

= 1 +
α− 1

limn→∞ nH

= 1

(If θ = 0 the last equality is not true. In that case nH must always be 0, therefore
θ̂MAP = (α− 1)/(n + α + β − 2) → 0 = θ̂ML. �

4. (optional) Compare qualitatively θ̂1
MAP and θ̂ML. Assuming that the coin has a true

“heads” probability of 0.41, which of the two estimators is likely to learn it faster? If
data is sufficient, which of the two estimators is better?

Solution: θ̂1
MAP is able to get close to θ = 0.41 with fewer samples because it

only needs to rule out θ = 0.5 out of the two feasible choices for the parameter θ.
However, if data is sufficient θ̂ML is better because the MAP estimate will never be
able to get closer than 0.01 to the true value of the parameter, whereas in the limit
θ̂ML recovers 0.41 exactly. �

Part II: Polynomial Regression

Problem 3

In this problem, we explore the behavior of polynomial regression methods when only a
small amount of training data is available. We use polynomial regression models of the
form

y = w0 + w1x + w2x
2 + . . . + wmxm + ε (6)

= xTw + ε (7)

9

where ε ∼ N(0, σ2) (zero mean Gaussian noise) and x = [1 x x2 . . . xm]T . In a matrix
form for all the training outputs, the model can be written as

y = Xw + e (8)

where y = [y1, . . . , yn]T , X = [xT
1 ; · · · ;xT

n] depends on the polynomial order, and e ∼
N(0, σ2I). In other words, the outputs y are normally distributed with mean vector Xw
and covariance matrix σ2I. The likelihood of the outputs, given the inputs, can therefore
be expressed as

p(y|Xw, σ2) = N(y;Xw, σ2I) (9)

where N(y; µ, Σ) is a multi-variate (here n−variate) Gaussian

N(y; µ, Σ) =
1

(2π)n/2det(Σ)1/2
exp

{
− 1

2
(y − µ)T Σ−1(y − µ)

}
(10)

We will begin by using a maximum likelihood estimation criterion for the parameters w
that reduces to least squares fitting.

1. Consider a simple 1D regression problem. The data in housing.data provides in-
formation of how 13 different factors affect house price in the Boston area. (Each
column of data represents a different factor, and is described in brief in the file
housing.names.) To simplify matters (and make the problem easier to visualise), we
consider predicting the house price (the 14th column) from the LSTAT feature (the
13th column).

We split the data set into two parts (in testLinear.m), train on the first part and test
on the second. We have provided you with the necessary MATLAB code for training
and testing a polynomial regression model. Simply edit the script (ps1 part2.m) to
generate the variations discussed below.

(a) (5 points) Use ps1 part2.m to calculate and plot training and test errors for
polynomial regression models as a function of the polynomial order (from 1 to
7). Use 250 training examples (set numtrain=250).

Solution: See attached plot (Figure 1). �

(b) (10 points) Briefly explain the qualitative behavior of the errors. Which of the
regression models are over-fitting to the data? Provide a brief justification.

Solution: The training error is monotonically decreasing (non-increasing) with
polynomial order. This is because higher order models can fully represent any
lower order model by adequate setting of parameters, which in turn implies that
the former can do no worse than the latter when fitting to the same training
data.

10

(Note that this monotonicity property need not hold if the training sets to
which the higher and lower order models were fit were different, even if these
were drawn from the same underlying distribution.)

The test error mostly decreases with model order till about 5th order, and then
increases. This is an indication (but not proof) that higher order models (6th
and 7th) might be overfitting to the data. Based on these results, the best choice
of model for training on the given data is the 5th order model, since it has lowest
error on an independent test set of around 250 examples. �

(c) (10 points) Rerun ps1 part2.m with only 50 training examples (set numtrain=50).
Briefly explain key differences between the resulting plot and the one from part
a). Which of the models are over-fitting this time?

Solution: See attached plot (Figure 1).

We note the following differences between the plots for 250 and 50 examples:

• The training errors are lower in the present case. This is because we are
having to fit fewer points with the same model. In this examples, in par-
ticular, we are fitting only a subset of the points we were previously fitting
(since there is no randomness in drawing points for training).

• The test errors for most models are higher. This is evidence of systematic
overfitting for all model orders, relative to the case where there were many
more training points.

• The model with the lowest test error is now the third order model. From 4th
order onwards, the test error generally increases (though the 7th order is an
exception, perhaps due to the particular choice of training and test sets).
This tells us that with fewer training examples, our preference should switch
towards lower-order models (in the interest of achieving low generalisation
error), even though the true model responsible for generating the underlying
data might be of much higher order. This relates to the trade-off between
bias and variance. We typically want to minimise the mean-square error,
which is the sum of the bias and variance. Low-order models typically have
high bias but low variance. Higher order models may be unbiased, but have
higher variance.

�

There are many ways of trying to avoid over-fitting. One way is to use a maximum
a posteriori (MAP) estimation criterion rather than maximum likelihood. MAP cri-
terion allows us to penalize parameter choices that we would not expect to lead to
good generalization. For example, very large parameter values in linear regression
make predictions very sensitive to slight variations in the inputs. We can express a
preference against such large parameter values by assigning a prior distribution over
the parameters such as simple Gaussian

p(w; α2) = N (0, α2I) (11)

11

This prior decreases rapidly as the parameters deviate from zero. The single variance
(hyper-parameter) α2 controls the extent to which we penalize large parameter values.

This prior needs to be combined with the likelihood to get the MAP criterion. The
MAP parameter estimate maximizes

log
(
p(y|Xw, σ2)p(w; α2)

)
= log p(y|Xw, σ2) + log p(w; α2) (12)

The resulting parameter estimates are biased towards zero due to the prior. We can
find these estimates as before by setting the derivatives to zero.

2. (15 points) Show that

ŵMAP = (XTX +
σ2

α2
I)−1XTy, (13)

Solution: Given training input matrix X and column vectors for weights w and
training targets y, our objective function is

Q = log (p(y|Xw, σ2)) + log (p(w; α2))

=
−1

2
(y −Xw)T (σ2I)−1(y −Xw)

−1

2
wT (α2I)−1w

+ constant (w.r.t. w)

=
−1

2σ2
(yT y − 2yT Xw − wT XT Xw) +

−1

2α2
(wT w) + const.

Differentiating with respect to weights,

∂Q

∂w
= 0

⇒ −1
2σ2 (2X

T y − 2XT Xw) + −1
2α2 (2w) = 0

⇒ (XT X
σ2 + I

α2)w = XT y
σ2

⇒ (XT X + σ2

α2 I)w = XT y

⇒ w = (XT X + σ2

α2 I)−1XT y.

(Note: we should also take the second derivative to make sure we truly have a maxi-
mum. For the sake of this problem set, we did not require you to perform this check.)
�

3. (5 points). In the above solution, show that in the limit of infinitely large α, the
MAP estimate is equal to the ML estimate, and explain why this happens

Solution: As α →∞, the variance ratio approaches zero, so w = (XT X)−1XT y.

In terms of regularisation, this means that the prior has infinite variance (about mean
zero), and is therefore flat. All weight vectors are equally likely a priori, and we are
back to the ML setting where the weights are determined solely by the data. �

12

4. Let us see how the MAP estimate changes our solution in the housing-price esti-
mation problem. The MATLAB code you used above actually contains a variable
corresponding to the variance ratio var ratio = σ2

α2 for the MAP estimator. This
has been set to a default value of zero to simulate the ML estimator discussed in
class. In this part, you should vary this value from 1e-8 to 1e-4 in multiples of 10 (i.e.
1e-8, 1e-7, ..., 1e-4). A larger ratio corresponds to a stronger prior (smaller values of
α2 constrain the parameters w to lie closer to origin).

(a) (10 points) Plot the training and test errors as a function of the polynomial
order using the above 5 MAP estimators and 250 and 50 training points.

Solution: See attached plots (Figures 2 and 3). �

(b) (10 points) Describe how the prior affects the estimation results.

Solution: We make the following observations:

• As the variance ratio (i.e. the strength of the prior) increases, the training
error increases (slightly). This is because we are no longer solely interested
in obtaining the best fit to the training data.

• The test error for higher order models decreases dramatically with strong
priors. This is because we are no longer allowing these models to overfit to
training data by restricting the range of weights possible.

• Test error generally decreases with increasing prior.

• As a consequence of the above two points, the best model changes slightly
with increasing prior in the direction of more complex models.

• For 50 training samples, the difference in test error between ML and MAP is
more significant than with 250 training examples. This is because overfitting
is a more serious problem in the former case.

�

13

1 2 3 4 5 6 7
15

20

25

30

35

40

45

50

55

polynomial order

training error
test error

1 2 3 4 5 6 7
0

20

40

60

80

100

120

polynomial order

training error
test error

Figure 1: Plots for 3.1(a) (left) and 3.1(c) (right).

1 2 3 4 5 6 7
15

20

25

30

35

40

45

polynomial order

training error
test error

1 2 3 4 5 6 7
15

20

25

30

35

40

45

polynomial order

training error
test error

1 2 3 4 5 6 7
15

20

25

30

35

40

45

polynomial order

training error
test error

1 2 3 4 5 6 7
15

20

25

30

35

40

45

polynomial order

training error
test error

1 2 3 4 5 6 7
15

20

25

30

35

40

45

polynomial order

training error
test error

Figure 2: Plots for 3.4(b), for 250 training examples. Left to right, (then) top to bottom, variance
ratio = 1e-8 to 1e-4

1 2 3 4 5 6 7
0

50

100

150

polynomial order

training error
test error

1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

polynomial order

training error
test error

1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

polynomial order

training error
test error

1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

polynomial order

training error
test error

1 2 3 4 5 6 7
5

10

15

20

25

30

35

40

45

50

55

polynomial order

training error
test error

Figure 3: Plots for 3.4(b), for 50 training examples. Left to right, (then) top to bottom, variance
ratio = 1e-8 to 1e-4

14

