
6.867 Machine Learning

Problem Set 2

Due date: Wednesday October 6

Please address all questions and comments about this problem set to 6867-staff@csail.mit.edu.
You will need to use MATLAB for some of the problems but essentially all the code is pro-
vided. If you are not familiar with MATLAB, please consult

http://www.ai.mit.edu/courses/6.867/matlab.html

and the links therein.

Problem 1: active learning

Consider a simpler linear regression model from one dimensional bounded input x ∈ [−1, 1]
to y ∈ R. In a vector form for n inputs {x1, . . . , xn} we can write the model as

y = Xw + e, (1)

where X = [1 x1; · · · ; 1 xN ]; e = [ε1, . . . , εn]T is a random vector where each εi is indepen-
dent zero-mean Gaussian noise with variance σ2.

There are many criteria we can use for input selection in this context. For example, we
can use the determinant of the induced covariance matrix of the ML parameter estimate
ŵ = (XTX)−1XTy given by C = σ2(XTX)−1. The determinant, product of variances
in principal directions, can be interpreted as a measure of effective (squared) “volume”
of variation. The trace of the covariance matrix, sum of the variances in the principal
directions, is an alternative (equally reasonable) measure to optimize.

1. (10 points) Show that, similarly to the determinant criterion, the first two training
inputs, x1 and x2, that should be selected to minimise the trace of the covariance
matrix C are x1 = 1 and x2 = −1. Assume σ2 = 1 from now on.

Hint: The trace of a symmetric matrix is simply the sum of its diagonal elements.
For a 2× 2 symmetric matrix,

A =

[
a b
b c

]
, A−1 =

1

ac− b2

[
c −b
−b a

]
(2)
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2. (5 points) Based on the first two training inputs, plot the output variance as a function
of the input x.

3. (10 points) We have seen in class that incorporating any additional input point is
guaranteed to reduce (not increase) the output variance at all points. Moreover, the
output variance is guaranteed to go down for the selected input. We can therefore
always query the point with the highest variance to successively and uniformly reduce
of the output variances. This is the sequential selection criterion.

Select the third training point x3 as the one which currently has highest output
variance (e.g., by looking at your plot). Plot the output variance resulting from
querying at your selected point. You will need to write a line or two of MATLAB
code for this.

4. (10 points) Suppose we were interested only in knowing the output at a single point
x = 0. Compare the output variance at x = 0 resulting from adding the third point
according to the sequential selection criterion or by simply querying at x = 0. What
conclusions can you draw from this?

5. (10 points) You have been provided with MATLAB code to test the sequential selec-
tion active learning criterion on real data obtained from the UCI machine learning
repository. The regression problem considered here involves predicting the fuel effi-
ciency of a car (in miles per gallon) from two features: horsepower and weight (scaled
to suitable units). The regression model we use for this is a simple linear one. The
script activeReg.m selects a few training points at random to start with. It then
performs both active and passive learning (independent of each other), and keeps
track of the test errors. For active learning, the next training example (car) to be se-
lected is the one which currently has the highest output variance. The active learning
method can query the same car multiple times, each time getting the same answer.
For passive learning, the next example is selected simple at random with replacement.
For each method the available training examples are the first 150 cars in the dataset,
while the remaining cars are reserved for testing.

Compare the performance of active and passive learners by looking at how test errors
behave as a function of the number of training samples. For your convenience, our
script will automatically generate these plots. The plots are averaged over 30 indepen-
dent runs since the random selection of initial points and successive random selections
by the passive method can create considerable variation in the test performance. Can
you explain the plots?
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Problem 2: linear discriminant, optimality

We would like to classify vectors x of dimension d into one of two classes, y = 0 or y = 1.
Assume that we know in advance that data from each class is sampled according to Gaussian
distributions of equal covariance:

p(x|y = 0; µ0,Σ) =
1√

2π|Σ|
exp

(
−1

2
(x− µ0)

TΣ−1(x− µ0)

)
(3)

p(x|y = 1; µ1,Σ) =
1√

2π|Σ|
exp

(
−1

2
(x− µ1)

TΣ−1(x− µ1)

)
(4)

To classify each point x optimally (in the sense of minimizing the expected classification
error) we must assign it to the class y that maximizes the posterior probability

P (y|x) =
p(x|y)P (y)

p(x)
(5)

The resulting decision boundary, separating the two classes, is defined by the equation

log
P (y = 1|x)

P (y = 0|x)
= log

p(x|y = 1)P (y = 1)

p(x|y = 0)P (y = 0)
= 0 (6)

1. (5 points) Assuming µ0, µ1,Σ, P (y) are known, show that the decision boundary is
given by the following line

(µ1 − µ0)
TΣ−1

(
x− µ1 + µ0

2

)
+ log

P (y = 1)

P (y = 0)
= 0 (7)

Can a linear logistic regression model give rise to the same decision boundary?

(Hint: if A is symmetric then vTAu = uTAv.)

In practice the parameters of the two Gaussians are unknown but we are given n0 samples
from class y = 0 and n1 samples from class y = 1. Let µ̂0 and Σ̂0 be the mean and
covariance of the samples from class y = 0; similarly, we define µ̂1 and Σ̂1 based on the
samples from class y = 1.

In Fisher linear discriminant analysis we find w such that when each point is projected
onto the line t · w, t ∈ R, the classes are “maximally” separable by a simple threshold.
The criterion for finding w is to maximize the separation of the projected means over the
projeced variances:

(µ̂T
1 w − µ̂T

0 w)2

n0wT Σ̂0w + n1wT Σ̂1w
(8)
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2. (5 points) To simplify our calculationwe first write the above criterion as

(mTw)2

wTSw
(9)

where m is a vector and S is a positive semi-definite and symmetric matrix. What
are m and S?

3. (10 points) When S is positive definite, we can write it as S = RTR, where R is
invertible (the square root of the matrix). Since R is invertible we can always search
for v = Rw instead of w directly. Write the criterion in terms of v and show that
the maximizing solution is given by

v̂ = R−Tm (10)

where R−T = (RT )−1. Provide the resulting expression for ŵ.

(Hint: maximum of aT (v/‖v‖) over v is obtained by any v proportional to a.

Problem 3: Fisher linear discriminat vs. logistic re-

gression

For this problem we have provided a MATLAB data file data.mat that contains 4 datasets,
all binary classification tasks. Each dataset consists of a training set (traini ) and a test
set (testi ):

train1, train1 2, test1 Data generated from two bivariate Gaussians with identical
covariances

train2, test2 Data generated from two bivariate Gaussians with different covariances

train3, test3 A digit classification task. The vectors representing digits are projected
to a plane defined by two dimensions that capture most of the variability.

train4, test4 The same digit classificaction task as in the 3rd dataset, but now digit
images are 64-dimensional vectors of 1’s or 0’s — pixels in a 8 × 8 bitmap. The 3rd
dataset is derived from this representation by projecting onto a plane.

The .X field of each variable is the representation of the points (each row is one datapoint),
while the y field contains the class labels (0 or 1).

We have provided the following MATLAB functions that implement both Fisher discrimi-
nant classification and logistic regression:

plotdata(traini ) For 2D data, plots the data and associated labels.
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w = fisherdiscriminant(traini.X, traini.y) Trains a Fisher discriminant linear clas-
sifiers and returns its parameters.

w = logisticreg(traini.X, traini.y) Trains a logistic regression classifier by maxi-
mizing likelihood with the Newton’s method, and returns its parameters.

boundary([w1 w2 ...], testi ) For 2D data, plots the data and the decisions bound-
aries of several logistic regression or Fisher discriminant sets of parameters in a single
figure.

errorrate(w, testi ) Computes the error rate of a Fisher discriminant or logistic regres-
sion model.

1. (5 points) Train logistic regression and Fisher discriminant classifiers on each of the
first 3 training sets and report the test error on the corresponding test set (6 numbers).
For each dataset plot on the same graph the test data and the decision boundaries
corresponding to logistic regression and Fisher discriminant methods (3 plots).

2. (5 points) On the first data set (test1.dat) the performance of the two classifiers is
similar. Would you expect the performances to be similar for all datasets sampled
from class conditional distributions that are Gaussians with equal covariances?

3. (5 points) Training set train1 2 is identical to train1 except that it has an extra
training point. Train the logistic regression and the Fisher discriminant on train1 2

and compare the error rates on test1 with those achieved by models trained on
train1. For each method explain why the error rates change or not change with the
addition of a single training point.

4. (5 points) Train logistic regression and the Fisher discriminant on the full 64 dimen-
sional representation of the digits and report the error rates (train4 and test4).
Compare the error rates with those achieved on the reduced 2D representation (3rd
dataset). Is the multivariate Gaussian assumption reasonable for the full representa-
tion of the digits? How sensitive logistic regression and Fisher discriminant classifi-
cation are to the Gaussian assumption?
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