
6.867 Machine Learning

Problem Set 2 Solutions

Due date: Wednesday October 6

Problem 1: Active Learning

1. Solution: The covariance matrix of the parameter vector, after selecting the first
two training examples, x1 and x2, is given by
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To minimise the trace, the second term should be as small as possible. Since x1x2

lies between 1 and −1 in the input region of interest, the minimum occurs when
x1x2 = −1. Thus, x1 and x2 take the extreme values 1 and −1. �

2. Solution: After using two training examples, output variance at a test point x0 is
given by
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See attached plot (Figure 1). �
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3. Solution: We should either choose x3 = 1 or x3 = −1 as these are the points where
output variance is maximum for x ∈ [−1, 1].

After adding x3 = −1, output variance at a test point x0 is given by
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(Note: had we picked x3 = 1 instead, we would have got 1

8
(3 − 2x0 + 3x2

0
).)

See attached plot (Figure 1). �

4. Solution: Output variance at x = 0 after adding x3 according to the sequential
selection criterion is 0.375 (for both x3 = 1 and x3 = −1).

Output variance at x = 0 after adding x3 = 0 is given by

output variance(x0) =
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= 0.333

This shows that while the sequential selection criterion is good for reducing the un-
certainty at all test points, it does not guarantee that the uncertainty at any specific
point (other than the point queried) will be minimised. We can increase our con-
fidence about the output at a specific point by querying that point itself instead.
�

5. Solution: See attached plot (Figure 2).

We make two observations from this plot:

1. For very few training examples, active learning does much better than passive
learning in terms of test error on an independent data set.

2. When there are a large number of training examples, active learning does some-
what worse than passive learning.
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Figure 1: Plots for Problems 1.2 (left) and 1.3 (right).

The explanation for this is as follows. We have assumed a linear regression model
for active learning. However, for the real data that we are working with, we have
no guarantee of how good accurate a linear model is. When only a small number of
examples (4 or 5) are available, the actively learned model seeks out the most infor-
mative training examples. It is thus more resistant to overfitting than the passively
learned model. However, this resistance is gained at the cost of a strict assumption
of linearity of the underlying model. If the data truly fit a non-linear model, the
passive learning algorithm will eventually find the best linear fit. The active learning
algorithm will not, as it will repeatedly query extreme training inputs in an effort to
minimise variance (for the assumed linear model), and never query the large set of
points lying in intermediate regions. Thus, for a large number of training examples
(when both models have low output variance), the passive model is expected to have
a lower ‘bias’ and hence lower generalisation error than the actively learned model.

There are secondary effects caused by the facts that querying the same input produces
exactly the same output, and the noise distribution is not truly Gaussian. However,
these effects are not very significant in the present context, since the test error of
the actively learned linear model would still be expected to be greater than that for
the passive model with infinite possible queries from a non-linear model with true
Gaussian noise. (Our conclusion of the non-linearity of the model is supported by
plotting the outputs against each of the input features and observing the nature of
these (two) plots.) �

Problem 2: Optimality of the Linear Discriminant

1. Solution: As mentioned in the text of the problem, the points on the decision
boundary satisfy:

log
p(x|y = 1)P (y = 1)

p(x|y = 0)P (y = 0)
= 0
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Figure 2: Plot for Problem 1.5.

The
√

2π|Σ| in the normal distributions cancel because of the ratios, while the ex-
ponentials are canceled by the logarithm:
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and the assertion follows.

The decision boundary of logistic regression is also linear, and with the appropriate
sample of training points, any linear separation can be the result of training logistic
regression on some data. Thus the optimal decision boundary can be the decision
boundary of a linear logistic regression model.

In fact, if the two Gaussians have the same covariance and we sample a large number
of points as training data, the linear logistic regression decision boundary converges
to the optimal decision. �

2. Solution: The following optimization problem:

ŵ = arg max
w

(µ̂T

1
w − µ̂

T

0
w)2

n0wT Σ̂0w + n1wT Σ̂1w
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can be easily written as:

ŵ = arg max
w

[

(µ̂
1
− µ̂

0
)Tw

]2

wT

[

n0Σ̂0 + n1Σ̂1

]

w

Therefore

m = µ̂
1
− µ̂

0

S = n0Σ̂0 + n1Σ̂1

S is symmetric and positive semi-definite because Σ̂0 and Σ̂1 are and n0, n1 ≥ 0. �

3. Solution: To write the criterion in terms of v, we substitute w by R−1v:

(mTw)2

wTSw
=

(mTR−1v)2

(R−1v)TSR−1v
=

((R−Tm)Tv)2

vTv
=

[

(R−Tm)T
v

‖v‖

]2

where we have used S = RTR.

The criterion takes the form of the square of a dot product between the fixed vector
v̂ = R−Tm and the vector of norm 1 given by v/‖v‖. The only degree of freedom
over which to optimize is the angle between the two vectors. But if two vectors have
fixed norms, their dot product is maximized when they have the same direction (the
inequality vTu ≤ ‖v‖ · ‖u‖ holds). Thus v ≡ v̂ maximizes the criterion (as well as
any scalar multiple of v̂). Moreover:

ŵ = R−1v̂ = R−1R−Tm = S−1m =
(

n0Σ̂0 + n1Σ̂1

)

−1

(µ̂
1
− µ̂

0
)

�

Problem 3: Linear Discriminant vs. Logistic Regres-

sion

1. Solution:

Set 1 Set 2 Set 3

logistic 0.067 0.17 0.2125
Fisher disc 0.07 0.1650 0.22

For the plots see Figure 3 at the end. �

2. Solution: Yes, the performance of logistic regression and classification with the
Fisher linear discriminant should be similar if data truly comes from Gaussian classes
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of equal covariance. In this situation in the limit of infinite training data both logistic
regression and the Fisher discriminant converge to the decision-theoretical optimal
boundary, thus the only differences should arise because of the randomness of the
finite training sample. �

3. Solution:

Trained on train1 Trained on train1 2

logistic 0.067 0.067
Fisher disc 0.07 0.1510

We observe that the addition of the outlier does not affect logistic regression, but
has a strong negative impact on the performance of the Fisher linear discriminant
classifier.

Since the new point is correctly classified and far from the boundary, the logistic
model assigns to the outlier a P (y|x) probability exponentially close to 1. Adding
this probability to the likelihood has almost not effect on the criterion, because the
probability is already almost maximum at the point. Thus logistic regression is not
affected.

On the other hand the Fisher discriminant sees the data as if each class is Gaussian,
and the addition of a single point very far from the current mean can greatly affect
the estimate of the mean and variance of that Gaussian. We can distinguish two
effects on the decision boundary:

– a translation of the decision boundary because the location of the mean of one
class shifts with the addition of the outlier

– a rotation of the decision boundary because the variance in one direction in-
creases by a large amount, while the variance in the perpendicular direction
remains small. Thus the projection performed by the Fisher discriminant has to
be rotated to keep the variance small.

�

4. Solution:

64 features 2D projection

logistic 0.1425 0.2125
Fisher disc 0.23 0.22

We observe that Fisher discrimination and logistic regression achieve similar classi-
fication performance on the reduced 2D representation, but while the performance
of logistic regression improves significantly on the full set of features, that of Fisher
discrimination remains at best the same (if not even worse than that on 2D features).

Several properties of the given representation of digits violate the Gaussian assump-
tion. Think about averaging together all digit images in one class as if they were
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printed on transparent playing cards and placed in a deck. If digits were Gaussian,
the average image should be well defined (the mean of the multivariate Gaussian),
and the variability around that mean image should be distributed in all directions as
if its noise. In reality:

– some digits, like 4 and 7, are commonly written in more than one way, so when
we look through the transparent deck of cards we see more than one defined
outline

– the same basic outline can be transformed by slight rotations, shear, scaling, or
translation, and while the digit remains the same, the Gaussianity is violated
by such operations

Logistic regression is not that sensitive to the Gaussian assumption. If fact, in logistic
regression we only model P (y|x) as if it is the decision boundary between Gaussians,
but we do not assume that P (x) is a Gaussian distribution.

The Fisher discriminant is more sensitive to the Gaussian assumption because it is
derived by modeling directly the means and covariances of the training data as if
classes were Gaussian. If data is not Gaussian the means and covariances alone do
not fully capture data structure. �
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Figure 3: Plots for Problem 3 Part 1
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