
6.867 Machine Learning

Problem Set 3

Due date: Wednesday October 20, 2004

Please address all questions and comments about this problem set to 6867-staff@csail.mit.edu.
You will need to use MATLAB for some of the problems but most of the code is provided.
If you are not familiar with MATLAB, please consult

http://www.ai.mit.edu/courses/6.867/matlab.html

and the links therein.

Problem 1: Kernels, features, and maximum margin

1. (5 points) We have discussed two different definitions of kernels in class:

• Definition 1: K(x,x′) is a kernel if it can be written as an inner product
φ(x)T φ(x′) for some feature mapping x → φ(x).

• Definition 2: K(x,x′) is a kernel if for any finite set of training examples,
x1, . . . ,xn, the n × n matrix K such that Kij = K(xi,xj) is positive semi-
definite.

Show that Definition 1 implies Definition 2. Hint: you could show this by proving
that for any real numbers α1, . . . , αn and points x1, . . . ,xn,

n∑
i=1

n∑
j=1

αiαjK(xi,xj) ≥ 0

if the kernel can be written as K(x,x′) = φ(x)T φ(x′).

The converse holds as well (the definitions are equivalent) but the proof is a bit more
involved. Moreover, any symmetric positive semi-definite n × n matrix K can be
interpreted as coming from some kernel Kij = K(xi,xj) evaluated on some n points
x1, . . . ,xn. There are many possible kernels (and sets of points) that would give rise
to the same n×n matrix, however. The knowledge that at least one such kernel exists
is sometimes useful when trying to optimize a kernel for a particular set of points
(we can cast the optimization directly in terms of symmetric positive semi-definite
matrices without worrying about feature maps).

1



2. One way to construct kernels is to build them from simpler ones. We have already
seen three possible “construction rules”: assuming K1(x,x′) and K2(x,x′) are kernels
then so are

• (scaling) f(x)K1(x,x′)f(x′), f(x) ∈ R
• (sum) K1(x,x′) + K2(x,x′)

• (product) K1(x,x′)K2(x,x′)

(a) (5 points) Let φ(1)(x) and φ(2)(x) be the feature vectors corresponding to kernels
K1(x,x′) and K2(x,x′), respectively. These feature vectors may be of different
lengths. Show that the product kernel K1(x,x′)K2(x,x′) is a kernel by show-
ing that its feature vectors are given explicitly by φ(x) whose (i, j) component

(doubly indexed vector) is φ
(1)
i (x)φ

(2)
j (x).

(b) (10 points) Use the construction rules to build a normalized cubic polynomial
kernel

K(x,x′) =

(
1 +

(
x

‖x‖

)T (
x′

‖x′‖

))3

(1)

You can assume that you already have a constant kernel K0(x,x′) = 1 and a
linear kernel K1(x,x′) = xTx′. Identify which rules you are employing at each
step.

3. Let’s now explore the effect of feature vectors on the maximum margin solution.
Consider a simple one dimensional case where we have only two training examples
(x1 = 0, y1 = −1), (x2 =

√
2, y2 = 1), and we map each input to a feature vec-

tor φ(x) = [1
√

2x x2]T . In other words, we are effectively using a second order
polynomial kernel. We’d like to find and understand the maximum margin solution
ŵ1 = [ŵ1, ŵ2, ŵ3]

T and ŵ0 to

min ‖w1‖2 subject to

y1[w0 + φ(x1)
Tw1]− 1 ≥ 0

y2[w0 + φ(x2)
Tw1]− 1 ≥ 0

Please return your derivations along with the specific answers.

(a) (5 points) Using your knowledge of the maximum margin boundary write down
a vector that points in the same direction as ŵ1

(b) (5 points) What is the value of the margin that the we can achieve in this case?

(c) (5 points) By relating the margin and ŵ1, provide the actual solution ŵ1. What
is ŵ0?

(d) (5 points) Plot the resulting discriminant function in MATLAB. How are large
negative x classified? Briefly explain why the discriminant function does not
equal zero at the midpoint x =

√
2/2 between x1 and x2.

2



Problem2: Support Vector Machines

We have provided the following Matlab routines for constructing support vector machine
classifiers:

Klinear.m, Kpoly.m, Kgaussian.m A linear, polynomial, and Gaussian kernel. Besides
the two vectors, the kernel takes an extra parameter. In the case of the polynomial
kernel, the extra parameter is the degree. In the case of the Gaussian, the extra
parameter is the standard deviation. The linear kernel ignores this parameter. The
name of the kernel must be prefixed by ’@’ when passed to svm train.m.

svm train.m Trains a SVM given training data, a kernel, kernel parameter, and the C
penalty on training errors.

svm discrim func.m Evaluates the SVM hyperplane on a set of test points. Data is clas-
sified according to the sign of this evaluation.

svm plot.m Plots the SVM decision boundary and the supplied labeled datapoints.

svm test.m Runs an SVM experiment by training the SVM on the supplied training data,
and testing it on the supplied test data. Plots the SVM decision boundary, and the
test errors.

We have also provided four train/test sets of data. The first three are artificially generated
2-dimensional data, while the last one is the 64-dimensional digit dataset from Problem
Set 2. You can load all data with load data ps3 2.mat. The 2-dimensional datasets are
pictured below:

Set 1 Set 2 Set 3

1. (10 points) For the first three datasets, consider the linear, second order polynomial,
and Gaussian of standard deviation 1 kernels. For each dataset provide a rationale
for which kernel should be the best for training a SVM classifier on that dataset.
Choose the best kernel for each dataset and plot the decision boundary and test
errors with svm test.m. Hand in the three plots. (for consistency, everybody should
use C = 1000).

3



2. (10 points) For the digit dataset (set4 train and set4 test), train and test SVM’s
with a linear, polynomial of degree 2, and Gaussian of standard deviation 1.5 kernels.
Report the test errors. How does the performance of the SVM compare to the logistic
regression classifier of Problem Set 2? (Note: you will have to use svm train.m and
svm discrim func.m directly, because svm test.m is for 2D data only).

Problem 3: Non-Separable SVM’s

Given a set of training points x1,x2, . . . ,xn and associated class labels y1, y2, . . . , yn ∈
{−1, 1}, the linear support vector machine finds a linear separation xTw1+w0 = 0 between
the training points in each class that maximizes the margin (the distance to the two training
sets). New points are then classified according to the side of the separation on which they
fall.

If the training points are not linearly separable, in the search for the optimal decision
boundary we need to allow for some training points to be on the wrong side of the linear
separation. One way to achieve this that you have seen during lecture is through the
following optimization problem:

minw0,w1,ξ
1
2
‖w1‖2 + C

∑n
i=1 ξi

s.t. yi[w0 + xT
i w1] ≥ 1− ξi

ξi ≥ 0

The slack variables ξ = (ξ1, ξ2, . . . , ξn) express the amount by which each point is violating
the margin constraint (ξi = 0 when the constraint is satisfied), while the constant C
represents the penalty for violated constraints.

The above formulation has the shortcoming that the actual value of C has no obvious
interpretation. It is therefore difficult to select C a priori. Here we will derive an alternative
formulation that addresses this issue. Specifically, we consider the following optimization
problem (called ν−SVM):

minw0,w1,ξ,ρ
1
2
‖w1‖2 − νρ + 1

n

∑n
i=1 ξi

s.t. yi[w0 + xT
i w1] ≥ ρ− ξi

ξi ≥ 0
ρ ≥ 0

The role of C here is replaced by a scalar variable ρ and a positive constant ν which we
can interpret more clearly. The number of support vectors turns out to be roughly nν,
thus ν selects the expected number of training errors. ρ, on the other hand, is set by the
optimization problem.

To derive the dual optimization problem in this case we associate Lagrange multipliers
α = (α1, α2, . . . , αn), β = (β1, β2, . . . , βn), and γ with each of the constraints (these will

4



be the new optimization variables in the dual problem), and construct the unconstrained
objective:

L(w0,w1, ξ, ρ; α, β, γ) =
1

2
‖w1‖2 − νρ +

1

n

n∑
i=1

ξi +

+
n∑

i=1

αi

[
ρ− ξi − yi[w0 + xT

i w1]
]
−

n∑
i=1

βiξi − γρ

The problem we wish to solve is

min
w0,w1,ξ,ρ

max
α≥0
β≥0
γ≥0

L(w0,w1, ξ, ρ; α, β, γ)

By switching the order of min and max (which can be shown to be equivalent in this case)
we will instead solve:

max
α≥0
β≥0
γ≥0

min
w0,w1,ξ,ρ

L(w0,w1, ξ, ρ; α, β, γ)

1. (10 points) One can rewrite L in the following form:

L(w0,w1, ξ, ρ; α, β, γ) =−

(
n∑

i=1

αiyi

)
w0 +

[
1

2
‖w1‖2 −

(
n∑

i=1

αiyix
T
i

)
w1

]
+

+
n∑

i=1

(
1

n
− αi − βi

)
ξi +

(
n∑

i=1

αi − γ − ν

)
ρ

What constraints α, β, and γ must satisfy so that the minimum

J(α, β, γ) = min
w0,w1,ξ,ρ

L(w0,w1, ξ, ρ; α, β, γ)

is finite? Provide an expression for J(α, β, γ) within those constraints.

When actually solving the dual problem, maximizing J(α, β, γ), we can further re-
move β and γ from the optimization problem since they merely impose the following
constraints on α:

αi ≤
1

n
and

n∑
i=1

αi ≥ ν (2)

in addition to the typical constraints αi ≥ 0 and
∑n

i=1 αiyi = 0. Try to understand
where the new constraints are coming from.

5



2. (10 points) If as a result of optimizing αi (and βi) they both turn out to be > 0
for some training point xi, then their associated constraints must hold with equality,
that is ξi = 0 and yi[w0 +xT

i w1] = ρ. Let (x′
1, y

′
1), (x

′
2, y

′
2), . . . , (x

′
m, y′m) be the subset

of the training points for which this is true. Use this property to derive a formula for
ρ and w0. Try to make the estimate of ρ and w0 as robust as possible by using the
entire subset of training points in the formulas.

3. (10 points) In this part of the problem you are asked to fill in the Matlab code for the
provided function nusvm train.m that should optimize ν-SVM. Like in the function
svm train.m that optimizes the simpler formulation involving C, the generic Matlab
quadratic programming routine quadprog performs the actual optimization. The
provided function needs only the parameters to quadprog, that is the definition of the
optimization problem. To understand the type of optimization solved by quadprog

read its documentation (doc quadprog at the Matlab prompt). The calculation of w0

is already provided in the function. Turn in a printout of the modified nusvm train.m.

One you filled in the parameters to quadprog, you can use nusvm test.m to run
experiments with the ν-SVM. Train the ν-SVM on set2 train with a Gaussian
kernel of standard deviation 1 and the following values for ν: 0.01, 0.1, 0.3, 0.5, and
0.7. Report the number of training errors, as well as the test error on set2 test.
Does the parameter ν have the expected effect?

6


