
6.867 Machine Learning

Problem Set 3 Solutions

Due date: Wednesday October 20

Problem 1: Kernels, features and maximum margin

1. Solution: For any α,

αTKα =
n∑

i=1

n∑
j=1

αiαjK(xi,xj)

=
n∑

i=1

n∑
j=1

αiαjΦ(xi)
TΦ(xj)

= (
n∑

i=1

αiΦ(xi))
T (

n∑
j=1

Φ(xj))

= (
n∑

i=1

αiΦ(xi))
2

≥ 0

Hence, K is a positive semi-definite matrix. �

2. Solution:

(a) For a pair of input points x and x′, and two possible feature vectors Φ(1)(·) and
Φ(2)(·) for each point, of lengths n1 and n2 respectively, the product kernel value
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(which is a scalar) is given by:

K(x,x′) = K1(x,x′)×K2(x,x′) (1)

= (Φ(1)(x)T Φ(1)(x′))× (Φ(2)(x)T Φ(2)(x′)) (2)

= (

n1∑
i=1

Φ
(1)
i (x)Φ

(1)
i (x′))× (

n2∑
j=1

Φ
(2)
j (x)Φ

(2)
j (x′)) (3)

=

n1∑
i=1

n2∑
j=1

Φ
(1)
i (x)Φ

(2)
j (x)Φ

(1)
i (x′)Φ

(2)
j (x′) (4)

=

n1×n2∑
k=1

Φk(x)Φk(x
′) (5)

= Φ(x)T Φ(x′), (6)

which is a valid inner product. Thus, the product kernel, K(x,x′), is a valid
kernel.

(b) The rules we apply at different steps are as follows:

Step 1: Scaling. (Using f(x) = (1/||x||), we get a new kernel K3(x,x′))
Step 2: Sum. (K4(x,x′) = 1 + K3(x,x′))
Step 3: Product, twice. (to obtain K4(x,x′)3)

�

3. Solution: Input vectors x1 = 0 and x2 = 1 are mapped to feature vectors Φ(x1) =[
1 0 0

]T
and Φ(x2) =

[
1 2 2

]T
.

(a) For a training set consisting of one positive and one negative example, the di-
rection of the weight vector ŵ1 is the same as the direction of a vector from the
negative example to the positive example, in the feature space. Thus, direction
of ŵ1 = [0 2 2]T

(b) Margin = distance from each support vector to decision boundary (in feature
space) = distance from each training point to a point midway between the 2
points (since there are only 2 training examples) =

√
2.

(c) ||ŵ1|| = 1/(margin). We have now specified both the norm and the direction
of the weight vector. Therefore, we can calculate the weight vector as ŵ1 =
[0 1/2 1/2]T .

Constraints are satisfied as equalities at the support vectors (i.e., the two train-
ing points). Thus,

−1(w0 +
[

1 0 0
]
ŵ1) = 1

+1(w0 +
[

1 2 2
]
ŵ1) = 1

Solving, w0 = −1.
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Figure 1: Plot for Problem 1.3 (d)

(d) The discriminant function, as a function of input x, is given by w0 + ŵT
1 Φ(x) =

x2/2 + x/
√

2− 1. See Figure 1.

For large negative inputs x, the SVM classifier output is positive.

The decision boundary is equidistant from the support vectors (i.e. the two
training points) in feature space, not in input space. There is a non-linear
mapping from input space to feature space. Thus, points equidistant from the
training points in the input space need not lie on the decision boundary.

�

Problem 2: Support Vector Machines

1. Solution:

Set 1 The best kernel is the linear one. Rationale: samples seem to be drawn from
two Gaussians of the same covariance, whose decision boundary is linear. It is
always best to choose the simplest model to discourage overfitting. You can also
choose by the error rate on the test set.

Set 2 The best kernel is the second order polynomial one. Rationale: the decision
boundary between the two classes seems to be a parabola, a curve of degree 2.
It is certainly not linear, and the Gaussian kernel overfits. You can also choose
by the error rate on the test set.

Set 3 The best kernel is the Gaussian kernel. Rationale: the clusters are clearly not
separable with curves of degree one or two. Since the Gaussian kernel always
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separates points, it is the best choice here. Also, points are similar under the
Gaussian kernel if they are close to each other in the original space. It is clear
the small distance to the cluster center is the defining property of the classes.
You can also choose by the error rate on the test set.

Plots are shown in Figure 2.

�

2. Solution:
linear 2nd order Gaussian
0.1375 0.12 0.085

All the three kernels perform better than logistic regression (which was 0.1425).

�

Problem 3: Non-Separable SVM’s

1. Solution: Because L is linear in w0, ξ, and ρ, and w0, ξ, and ρ are unconstrained,
the coefficients in front of these variables must be 0. Otherwise we could drive L to
−∞ by choosing appropriate large values for w0, ξ, or ρ. Thus α, β, γ must satisfy
the following conditions in order for J to be finite:

n∑
i=1

αiyi = 0 (7)

αi + βi =
1

n
for every i ∈ {1, . . . , n} (8)

n∑
i=1

αi = γ + ν (9)

When these conditions are satisfied, L becomes:

L(w0,w1, ξ, ρ; α, β, γ) =
1

2
‖w1‖2 −

(
n∑

i=1

αiyix
T
i

)
w1

To obtain J under these conditions, we must minimize the above formula for L with
respect to w1 (the only variable left). Either by taking the derivative, or simply by
seeing it as a quadratic function, the minimizing w1 is

∑n
i=1 αiyixi. At this w1, J is:

J(α, β, γ) = −1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i xj

For completeness, J(α, β, γ) = −∞ if any of the constraints (7), (8), (9) is not
satisfied. It follows that the maximum of J(α, β, γ) with respect to α, β, γ will not
be achieved if any of (7), (8), (9) is not satisfied.
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Since β does not appear in the criterion, the constraints αi + βi = 1
n
, βi ≥ 0 can be

rewritten as 1
n
− αi ≥ 0. Similarly

∑n
i=1 αi = γ + ν, γ ≥ 0 becomes

∑n
i=1 αi − ν ≥ 0.

�

2. Solution: For this part we assume α is known as a result of solving the dual
optimization, and we must express w0 and ρ in terms of V α and the training data.
w1 is already known from the derivation of the dual optimization: w1 =

∑n
i=1 αiyixi

Let i be a positive support vector (yi = 1) and j be a negative one (yj = −1). Then:

w0 + xT
i w1 = ρ

−w0 − xT
j w1 = ρ

Adding the two equations together we get

ρ =
1

2
(xi − xj)

Tw1

To get a robust estimate ρ̂, we can consider all positive-negative pairs of SV’s, and
average the values we obtain from the above equation. An alternative is to take the
median.

Now given ρ̂, we can solve for w0 from and SV constraint:

w0 = yiρ̂− xT
i w1

To get a robust estimate, we can average all the above equations for all SV’s, or take
the median.

An alternative solution is to view the problem as solving an over-constrained system of
linear equations with 2 unknowns. A robust solutions to such a system that minimizes
the error between predicted and real values in the least square sense is given by the
pseudo-inverse of a (non necessarily square) matrix.

�

3. Solution: The code for solving the ν-SVM is shown in Figure 3.

ν 0.01 0.1 0.3 0.5 0.7
training error 0 0.01 0.05 0.07 0.18
test error 0.013 0.014 0.073 0.105 0.195

ν has the expected effect in the sense the number of training errors roughly increases
with ν. The fraction of training errors is not exactly ν because of the limited sample
on which the SVM is trained (in the limit they should become equal).

�
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Figure 2: Plots for problem 3 part 1
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function svm = nusvm_train(data, kernel, param, nu)

y = data.y;

X = data.X;

n = length(y);

% evaluate the kernel matrix

K = feval(kernel,X,X,param); % n x n positive semi-definite matrix

K = (K+K’)/2; % should be symmetric. if not, may replace by equiv symm kernel.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% For Part 4 of the problem, you must fill in the following section.

% Make sure you undestand the parameters to ’quadprog’ (doc quadprog)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

D = diag(y); % diagonal matrix with D(i,i) = y(i)

H = D*K*D; % H(i,j) = y(i)*K(i,j)*y(j)

f = zeros(n,1);

A = -ones(1,n);

b = -nu;

Aeq = y’;

beq = 0.0;

LB = zeros(n,1);

UB = 1/n * ones(n,1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

X0 = zeros(n,1);

warning off; % suppress ’Warning: Large-scale method ...’

alpha = quadprog(H+1e-10*eye(n),f,A,b,Aeq,beq,LB,UB,X0)

warning on;

% essentially, we have added a (weak) regularization term to

% the dual problem favoring minimum-norm alpha when solution

% is underdetermined. this is also important numerically

% as any round-off error in computation of H could potentially

% cause dual problem to become ill-posed (minimizer at infinity).

% regularization term forces Hessian to be positive definite.

% select support vectors.

S = find(alpha > eps);

NS = length(S);

beta = alpha(S).*y(S);

XS = X(S,:);

% estimate w0 robustly (bias parameter)

dpos = find((y > 0) & (alpha > 0) & (alpha < 1/n));

dneg = find((y < 0) & (alpha > 0) & (alpha < 1/n));

margvecs = [dpos ; dneg];

npos = length(dpos);

nneg = length(dneg);

Mpos = reshape(repmat(reshape(K(S,dpos), [NS npos 1]), [1 1 nneg]), [NS npos * nneg]);

Mneg = reshape(repmat(reshape(K(S,dneg), [NS 1 nneg]), [1 npos 1]), [NS npos * nneg]);

rho = mean(0.5*beta’*(Mpos - Mneg));

w0 = median(rho*y(margvecs) - sum(diag(beta)*K(S,margvecs))’);

% store the results

svm.kernel = kernel;

svm.NS = NS;

svm.w0 = w0;

svm.beta = beta;

svm.XS = XS;

svm.rho = rho;

svm.param = param;

Figure 3: Solution to problem 3 part 3
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