
6.867 Machine Learning

Problem Set 4

Due date: Wednesday November 3

Please address all questions and comments about this problem set to 6867-staff@csail.mit.edu.
You will need to use MATLAB for some of the problems but essentially all the code is pro-
vided. If you are not familiar with MATLAB, please consult

http://www.ai.mit.edu/courses/6.867/matlab.html

and the links therein.

Problem 1: Feature Selection

The task and the data

In this problem you will study feature selection on the task of predicting vowels (a,e,i,o,u)
in English from the preceding letters. To predict if the current letter is or is not a vowel,
we look at up to eight letters before the current position. For each of the previous letters
we only look at whether they themselves are vowels or not.

Because letters belonging to different words are likely to be much less correlated than letters
within a word, we discard any letters before the beginning of the current word. We still
keep 8 features for every letter, but we give a special “stop” value to the features before
the beginning of the word. Thus each feature can take three values, with the following
meaning:

• xi = 0 if the letter at position −i belongs to the same word and is not a vowel

• xi = 1 if the letter at position −i belongs to the same word and is a vowel

• xi = 2 if position −i is past the beginning of the word

For instance, the letter ’s’ in the word ’English’ would be represented by the feature vector
(1, 0, 0, 0, 1, 2, 2, 2). The class label is 1 if the current letter is a vowel and 0 otherwise.

We have preprocessed the text of Alice in Wonderland by Lewis Carroll into this feature
representation, and split it into the training set p1 train.dat, and test set p1 test.dat.

1

1 2

p = 0.30

0 1

p = 0.40 p = 0.20

p = 0.60 p = 0.10

Figure 1: A probabilistic-suffix-tree classifier

There are 10789 letters for training, and 96926 for testing. Each row in each data file is of
the form y x1 x2 x3 x4 x5 x6 x7 x8 n, where n represents the number of repeated samples
with the same label and feature representation.

The classifier

A probabilistic suffix tree (PST) is a rooted tree whose edges match feature values such
that consecutive edges on the path from the root match consecutive features. Each node in
the tree is associated with a predictive distribution P (y|x1, x2, . . . , xi), where x1, x2, . . . , xi

are the feature values on the unique path from the root of the tree to that node.

In order to classify a sample (x1, x2, . . . , x8), we start from the root of the tree and match
feature values (traverse edges) as far down as possible. We predict with the distribution
associated with the last matched node. For example, in Figure 1

P (y = 1|0 . . .) = 0.3 (the root because no edge from the root is labeled 0)

P (y = 1|2 . . .) = 0.2

P (y = 1|12 . . .) = 0.4

P (y = 1|10 . . .) = 0.6

P (y = 1|11 . . .) = 0.1

In order to train a PST we start with the root and try to extend it (select features). The
predictive distribution associated with each new node (including the root), that is p, is
estimated based on all the training examples that match the path from root to the node.
In other words, p for the root node is simply the overall frequency of training samples
labeled 1. Similarly, the leftmost child of the root in the figure considers only samples

2

(letters) that have a preceding vowel, and so on. The predictive distributions associated
with the nodes already in the tree do not change as we add new nodes.

The feature selection question consists of deciding which labeled edge to add to which of
the possible available nodes.

Feature selection on PST’s

The principle for feature selection demonstrated here is to choose the feature representation
that has the most impact on the uncertainty in the class label. The classical measure of
uncertainty in a random variable is its entropy (shown here for the binary class label):

H(Y) =
∑

y

P (y) log
1

P (y)
= −P (y = 1) log P (y = 1)− P (y = 0) log P (y = 0) (1)

Suppose now that we need to predict the class label y given the feature representation
x. The knowledge of x should reduce the uncertainty in the class label. To measure the
uncertainty after observing x, we compute the average entropy of Y given X = x for all
possible values of x:

H(Y |X) =
∑
x

P (x)H(Y |X = x) = −
∑
x,y

P (x, y) log P (y|x) (2)

In terms of a PST with K nodes, let Pi(Y) be the label distribution associated with node
i, and Ni the number of training samples that fall under that node (and not under any of
its children). Let N be the total number of training samples. Then the estimate of the
conditional entropy of Y is:

H(Y |X) =
K∑

i=1

Ni

N
Hi(Y) (3)

In other words, since each x is associated with the node we would use to predict the label
for it, the overall conditional entropy is simply the sum of the entropies of these predictive
distributions weighted by the fraction of training samples that use the nodes.

If we add a leaf K + 1 to node j, some of the training samples that were classified by node
j will now be classified instead by leaf K + 1. Let NK+1 be their number and PK+1(Y) the
label distribution associated with the new node based on these NK+1 samples. Then the
conditional entropy after adding node K + 1 is given by:

Hnew(Y |X) =

(
K∑

i=1,i6=j

Ni

N
Hi(Y)

)
+

Nj −NK+1

N
Hj(Y) +

NK+1

N
HK+1(Y) (4)

Thus the effect of adding leaf K + 1 is the reduction of uncertainty in Y by the following
amount:

H(Y |X)−Hnew(Y |X) =
NK+1

N
(Hj(Y)−HK+1(Y)) (5)

3

To grow the tree, we consider all possible leafs and greedily select the leaf that maximizes
the reduction of conditional entropy (information gain).

Matlab files

We have provided the following Matlab files

new feature.m Can be used to create a PST with only the root. The syntax is

pst = {new feature(p1 train, [])}

add feature.m Extend a PST with a new leaf chosen by the information criterion

pst = add feature(p1 train, pst)

eval pst probs.m Evaluate the probability of class 1 on a test set. The function returns
a probability for each point.

plot pst.m Displays a PST.

Questions

1. (10 points) Suppose that in a training set we get the following training samples:
y x count
0 0 0
0 1 10
0 2 5
1 0 1
1 1 2
1 2 5

Compute H(Y), H(Y |x = 0), H(Y |x = 1), H(Y |x = 2), and H(Y |X). Also, compute
the reduction in conditional entropy if we add the edge 0, 1, or 2 to the root of an
empy PST trained on this set. What is the first edge that should be added to the
PST?

2. (10 points) Train a PST of 10 nodes (including the root) on p1 train and hand in
the plot of the PST. Mark on the plot beside each node the order in which it was
chosen, and the error rate on the test set p1 test. In computing the error rate note
that you must weight the errors by their count p1 test(:,end).

3. (10 points) Out of the constructed PST tree select two paths that assign the lowest
and the highest probability to y = 1. Express the decision rules represented by the
two paths in plain English (in terms of vowels, consonants, and beginning of words).
You only need to turn in the two sentences, and an explanation of whether they make
sense.

4

4. (5 points) Can the feature selection method extend a node that tests for “feature =
2”? Explain why or why not.

Problem 2: boosting

We consider here a simple AdaBoost algorithm and its properties. Suppose we have al-
ready added m − 1 weak classifiers (run m − 1 boosting iterations) so that the combined
discriminant function is given by

hm−1(x) = α̂1h(x; θ̂1) + α̂m−1h(x; θ̂m−1) (6)

We assume here that the weak component classifiers (e.g., decision stumps) h(x; θ) return
±1 labels and that the votes are non-negative. The next weak classifier to be added is
trained to optimize (minimize) the weighted classification error

εm =
1

2
− 1

2

n∑
i=1

W̃
(m−1)
i yih(x; θm) (7)

where W̃
(m−1)
i is the weight on the ith training example after m − 1 boosting iterations.

The weights are normalized to sum to one.

Let θ̂m denote the parameters of the new weak classifier, ε̂m the weighted error that it
achieves, and

W̃
(m−1)
+ =

∑
i: yi=h(xi;θ̂m)

W̃
(m−1)
i (8)

W̃
(m−1)
− =

∑
i: yi 6=h(xi;θ̂m)

W̃
(m−1)
i (9)

the total weight placed on examples that h(x; θ̂m) classifies correctly (“+”) and incorrectly
(“-”), respectively.

The votes αm associated with the new weak classifier are obtained by minimizing

Zm(αm) =
n∑

i=1

W̃
(m−1)
i exp

(
− yiαmh(xi; θ̂m)

)
(10)

= W̃
(m−1)
+ exp(−αm) + W̃

(m−1)
− exp(αm) (11)

with respect to αm. We have used here the fact that yih(xi; θ̂m) = 1 when the example is
correctly classified and −1 otherwise. Let α̂m be the resulting minimizing value.

The weights on the training examples are finally updated according to

W̃
(m)
i =

1

Zm(α̂m)
W̃

(m−1)
i exp

(
− yiα̂mh(xi; θ̂m)

)
(12)

5

where W̃
(0)
i = 1/n. Note that Zm(α̂m) obtained earlier is the normalization constant for

the weight update.

Each boosting iteration performed in this manner is guaranteed to decrease the average
exponential loss. In other words,

L(hm) =
1

n

n∑
i=1

exp
(
− yihm(xi)

)
(13)

=
1

n

n∑
i=1

exp
(
− yihm−1(xi)

)
exp

(
− yiα̂mh(xi; θ̂m)

)
(14)

should be lower than

L(hm−1) =
1

n

n∑
i=1

exp
(
− yihm−1(xi)

)
(15)

We can see this, for example, as follows

L(hm) = L(hm−1) ·

W̃
(m−1)
i︷ ︸︸ ︷

1

L(hm−1)

1

n

n∑
i=1

exp
(
− yihm−1(xi)

)
exp

(
− yiα̂mh(xi; θ̂m)

)
(16)

= L(hm−1)
n∑

i=1

W̃
(m−1)
i exp

(
− yiα̂mh(xi; θ̂m)

)
(17)

= L(hm−1)Zm(α̂m) (18)

where Zm(α̂m) < 1 since Zm(0) = 1 and α̂m is chosen to minimize Zm(αm).

1. (5 points) Express the weighted error ε̂m as a function of W̃
(m−1)
+ and W̃

(m−1)
− .

2. (5 points) Find the minimizing value Zm(α̂m) as a function of W̃
(m−1)
+ and W̃

(m−1)
− .

Also express the result in terms of ε̂m.

3. (5 points) Show that the classification error of hm(x) on the training set, denoted
here as êrr(hm), is bounded by

êrr(hm) ≤
m∏

k=1

2
√

ε̂k(1− ε̂k) (19)

You can assume here that L(hm), as discussed in the lecture, serves as an upper
bound on êrr(hm).

4. Adaboost is particularly easy to implement. We have, however, provided you with
almost all the necessary MATLAB code.

6

(a) (5 points) Please complete our implementation of Adaboost by substituting in
how the votes α are set for each new decision stump. You only need to modify
boost ada.m.

(b) (10 points) cancer.mat contains training and test data for a simple leukemia
classification problem. The two dimensional inputs correspond to normalized
gene expression levels for two different genes measured across different tissues.
Use call boosting to train the boosting classifier and plot the number of test
errors as a function of the number of boosting iterations. Modify the routine to
also plot the minimum voting margin, minimum taken over the training exam-
ples, as a function of the boosting iterations. Note that eval boost.m can also
return the total number of votes. What can you say about the plots?

(c) (5 points) Since the data set is two dimensional, it is easy to visualise the decision
regions of the resulting boosting classifier. Use plot decision.m to plot the
decision regions of the trained AdaBoost classifier after 50 decision stumps.

5. (5 points) Suppose we have collected a finite number of component classifiers from
successive boosting iterations, and use the binary±1 outputs of these component clas-
sifiers as features. Thus, with m component classifiers, we have a new m−dimensional
feature space. We define a linear classifier without a bias term as follows:

f(x;w) = w1h(x; θ̂1) + . . . + wmh(x; θ̂m) (20)

where θ̂1, . . . , θ̂m are fixed by boosting. We train this linear classifier by also mini-
mizing the average exponential loss on the training examples. Is the resulting linear
classifier equivalent to the one returned by AdaBoost? Justify your answer.

Problem 3: VC-dimension

In this problem, we will investigate the VC-dimension of sets of classifiers. A classifier here
is a function from some input space to the binary class labels +1,−1. A classifier can also
be described as a subset of the input space which gets the label +1. For example, a linear
classifier in the plane <2, can be described by a half-plane. For this reason, we can discuss
the family of linear classifiers as the set of all half-planes (and possibly also the plane itself
and the empty set).

We say that a class (i.e. set) H of classifiers shatters a set of points X = {x1,x2, . . . ,xn}
if we can classify the points in X in all possible ways. More precisely, for all 2n possible
labeling vectors y1, y2, . . . , yn ∈ {−1, 1}n, there exists a classifier h ∈ H such that h(xi) = yi

for all i. For any possible labelings of the points, there has to be a classifier in our set that
reproduces those labels. Using the set notation for classifiers, this means that for any subset
of examples X ′ ⊆ X (indicating the subset of points labeled +1), there exist a classifier
h ∈ H such that X ∩h = X ′ (the set of points for which h assigns label +1 includes X ′ but

7

not the rest of X). It is important to understand that shattering is a property of a set of
classifiers– not of a single classifier. A single classifier cannot shatter even a single point.

The VC-dimension of a set H of classifiers is the size of the largest set of points X that
can be shattered by H.

1. (10 points) Let C be the set of all possible circles in <2. Consider a set of classifiers
H obtained by mapping a circle c ∈ C to a classifier hc ∈ H such that hc(x) returns
+1 when x lies in the interior of c, and −1 otherwise. What is the VC dimension of
H? Justify your answer.

2. Decision stumps, by themselves, are not very powerful classifiers. For instance, a
single vertical (or horizontal) decision stump can only shatter 2 points in <2. However,
combining multiple decision stumps can give rise to more complex classifiers. In this
part, we calculate the VC dimensions of some combinations of decision stumps.

For points in <2, calculate the VC-dimension of the following two sets of classifiers:

(a) (10 points) Convex combinations of two vertical decision stumps.

(b) (10 points) Convex combinations of one vertical and one horizontal decision
stump.

As always, explain how you arrived at your answer.

8

