6.867 Machine Learning

Problem Set 4 Solutions

November 9, 2004

Problem 1: Feature Selection

1. Based on the provided data we obtain the following entropies (all logarithms are to

the base 2):
H(Y) 0.9321
H(Y|z=0) 0
H(Y|]z=1) 065
HY|z=2) 1
HY|X)  0.7739

Suppose now we add a new edge. Let H;(Y') be the entropy at the root, and Hy(Y)
be the entropy of the label distribution at the added node. Depending on which edge
we add, the entropies take the following values:

| Hi(Y) H(Y) root count leaf count H(Y|X)

edge = 0 | 0.9024 0 22 1 0.8614
edge =1 | 0.9940 0.65 11 12 0.8145
edge =2 | 0.7793 1 13 10 0.8753

Note that the entropy at the root changed from H(Y') to Hy(Y) because some of the
samples at the root are now taken to the added node.

Because originaly the conditional entropy was H(Y') = 0.9321, the reduction in con-
ditional entropy due to the addition of an edge is:

edge =0 0.0707
edge =1 0.1176
edge =2 0.0568

Therefore the best edge to add is 1.
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Figure 1: PST tree for Problem 1 Part 2

2. The error rates in the order in which the nodes are added are the following:

0.3846, 0.3846, 0.3846, 0.3846, 0.3846,0.2912,0.2912, 0.2912,0.2912, 0.2474

The actual PST tree is show in Figure 1.

.y = 1 is most probable when we follow the path 0 — 0 — 2. The corresponding rule
is:

If a word starts with two consonants the next letter is very likely to be a
vowel.

The path that makes y = 1 least likely is either 1 — 1 or 1 — 2 (you can choose
one). The corresponding rules are:

It is very unlikely for a vowel to follow two vowels.

or

It is very unlikely for a word that begins with a vowel to continue with a
vowel.

These rules are consistent with common intuition about English.

. No, we cannot extend a node past testing for “feature = 2”.

Once we the test for “feature = 2”7 succeeds, all following features will also be equal
to 2, because we are past the beginning of the word. Thus all datapoints under this
node have the exact feature representation, and we have no basis on which to split
them into two groups to further reduce the conditional entropy.



Problem 2

1. Solution:
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As stated in the problem,
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Using the result from the previous section,
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Using induction on L(hy,) = L(hy—1)Zm, we get
L(hm) =[] 2 =[] 2V (1 = e)ex (10)
k=1 k=1

Since we know that the error is < L(h,,), we get the required result.

4. Solution:

(a) alpha = 0.5%log((1-stump.werr)/stump.werr);

(b) The following code snippet calculates the minimum voting margin among the
training examples:

for k=1:num_iter
[hhtrain,summtrain]=eval_boost(model(1:k),data.xtrain(:,1:2));
votemargintrain(k)=(min(hhtrain.*data.ytrain))/summtrain;

end

figure;

plot(votemargintrain);

xlabel (’Number of boosting iterations’);

ylabel(’Voting margin train’);

title(’Voting margin as a function of the number of iterations’);

See Figures 2 and 3.

The test error decreases initially and then remains constant. However, the min-
imum voting margin on the training examples increases. It crosses zero (at
which point all training samples are correctly classified), and converges to a
value slightly less that 0.2. With more test samples, further reduction in (per-
centage) test error might have been observed.

(c) See Figure 4.
|

5. Solution: No. We are jointly optimising the votes here (in contrast to the greedy
optimisation in AdaBoost). Also, the votes need not be positive here. [

Problem 3

1. Solution: The VC dimension of the given class of classifiers is 3.

Three points in general position (i.e. 3 non-collinear points) can clearly be shattered
by this set of classifiers. However, no set of 4 points can be shattered. To see this, we
consider two cases (ignoring the cases of 3 or more collinear points, which can clearly
not be shattered):



— The convex hull of the 4 points is a triangle, with one point lying strictly inside

this convex hull: in this case, labelling the points at the vertices of the triangle
as +1 and the interior point as -1 is not possible.

— The convex hull of the 4 points is a quadrilateral: in this case, one of the two

labellings of non-adjacent vertices—both +1, remaining vertices -1, or both -1,
remaining vertices 4+1-—is not possible.

2. Solution:

(a)

VC dimension is 2. This can be seen as follows.

Given two decision stump classifiers hi(x) and hq(z), the classifier obtained as a
convex combination is given by sign(a; hy(x)+asha(x)). As stated in the problem
set, a single vertical decision stump (and hence also a convex combination of two
vertical decision stumps) can shatter 2 points in R%.

However, no set of 3 points can be shattered. For the purpose of labelling points
using vertical decision stumps, we need only consider the horizontal coordinates
of the points. Let these be x1, x5 and x3. Further, let sign(0) be equal to +1. In
this case, the labelling x1 = —1, x5 = 41, x3 = —1 is not possible. Changing the
definition of sign(0) does not help, as then the case x; = +1, 23 = —1, x3 = +1
is not possible.

VC dimension is 3.

Consider 3 points that form an equilateral triangle, one of whose sides is parallel
to the horizontal axis. Any required labelling of these 3 points can be obtained
by using either a single horizontal or a single vertical decision stump. Thus,
the set of convex combinations of a horizontal and a vertical decision stump (in
particular, the subset where one of the two weights in the combination is unity
and the other zero) can shatter 3 points.

No set of 4 points can be shattered by the given set of classifiers. Let us assume
that sign(0) is equal to +1; it is easy to show that the opposite assumption leads
to equivalent results. Then the possible decision regions include axis-aligned half
spaces (with either label) or axis-aligned quadrants (with label -1). The latter
case arises when the two stumps have equal weights in the convex combination.

Consider two cases (ignoring the cases of 3 or more collinear points, which can
clearly not be shattered):

x The convex hull of the 4 points is a triangle, with one point lying strictly
inside this convex hull: in this case, labelling the points at the vertices of the
triangle as -1 and the interior point as 41 is not possible. This is because
the interior point cannot lie in a half-space that does not contain any of the
other three points.
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Figure 2: Test error for AdaBoost classifier

Voting margin as a function of the number of iterations
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Figure 3: Minimum voting margin over training examples for AdaBoost classifier

x The convex hull of the 4 points is a quadrilateral: in this case, one of the
two labellings of non-adjacent vertices—both +1, remaining vertices -1, or
both -1, remaining vertices +1—is not possible.
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Figure 4: Decision regions for AdaBoost classifier



