
6.867 Machine Learning

Problem Set 5

Due date: Friday November 19, 2004

Please address all questions and comments about this problem set to 6867-staff@csail.mit.edu.
You will need to use MATLAB for some of the problems but most of the code is provided.
If you are not familiar with MATLAB, please consult

http://www.ai.mit.edu/courses/6.867/matlab.html

and the links therein.

Problem 1: Model selection

In this problem we illustrate Bayesian model selection on probabilistic suffix trees (PST’s).
Recall from Problem Set 4 that a PST is a classifier represented by a rooted tree, in which
each edge tests for a specific value of a feature, and each node contains a probability
distribution over possible class labels. To classify a datapoint represented by a sequence
of features, x = (x1, x2, x3, . . . ), we follow from the root the longest path of matching
consecutive features, and assign to x a class according to the distribution of the last node
reached.

Our task is to estimate a PST for a binary classification task (y ∈ {0, 1}) where each feature
can take values in {0, 1, 2} from a set of training points (x1, y1), (x2, y2), . . . , (xn, yn). This
is a model selection problem because apart from estimating the probability distributions
at each node, we need to decide the optimal structure of the tree supported by the data.

Consider a generic PST with K nodes, and let p1, p2, . . . , pK be the probability of y = 1
associated with each node. The structure of the tree and edge feature values represent the
model, while the probabilities θ = (p1, p2, . . . , pK) ∈ [0, 1]K constitute its parameters.

One way to compare models is via the Bayesian score (or marginal likelihood). We place
a prior distribution over the model parameters, in this case the “uninformative” prior
P (θ) = 1 for all θ ∈ [0, 1]K , and integrate out the parameters:

P (y1, . . . , yn|x1, . . . ,xn, PST) =

∫
[0,1]K

[ n∏
i=1

P (yi|xi, θ)

]
P (θ)dθ (1)
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The Bayesian score does not depend on any specific setting of the parameters since they
are integrated out, but it does depend on the prior. The prior has to divide one unit of
probability mass over the parameter space. Ideally, to maximize the score, a good fraction
of this probability mass is allocated to parameter values that maximize the data likelihood
or

∏n
i=1 P (yi|xi, θ). This is harder to achieve for complex models since the unit prior

probability mass has to be divided over a much larger parameter space. Put another way,
while finding parameter values that lead to high likelihood of the data becomes easier with
more complex models, the prior probability mass allocated to those values may become
vanishingly small. This highlights the complexity penalty built into the Bayesian score.

It is not always possible to evaluate the Bayesian score analytically but in our case it is.
We need a bit of notation to get started:

• n1, n2, . . . , nK are the number of data points from the training set classified using
each of the K nodes;

• n+
i is the number of positive (y = 1) training samples ending up at node i;

• n−i is the number of negative samples at node i (y = 0).

Note that n =
∑K

i=1 ni and ni = n+
i + n−i .

With this notation the likelihood of the training data can be written as:

n∏
i=1

P (yi|xi, θ) =
K∏

i=1

p
n+

i
i (1− pi)

n−i (2)

and the parameters θ̂ = (p̂1, p̂2, . . . , p̂K) that maximize the likelihood are

p̂i =
n+

i

ni

(3)

The resulting maximum value of the log-likelihood is equal to n times the conditional
mutual information score we used in Problem Set 4:

H(Y |X) =
K∑

i=1

ni

n

(
p̂i log

1

p̂i

+ (1− p̂i) log
1

1− p̂i

)
(4)

1. (10 points) Compute the Bayesian model selection score in terms of ni, n
+
i and n−i by

performing the integration in (1). You may use the following integral:∫ 1

0

pk(1− p)ldp =
k! l!

(k + l + 1)!
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The BIC score (Bayesian Information Criterion), is a large-sample approximation to the
Bayesian Model selection score that is much easier to compute in practice. It takes the
form of a log-likelihood penalized by d

2
log n, where d is the effective number of parameters:

n∑
i=1

log P (yi|xi, θ̂)− d

2
log n (5)

In our PST d is the number of incomplete nodes (nodes that do not have all features 0, 1, 2
as children). This is because if a node is fully expanded no datapoint will be assigned to
it, and its probability distribution will never be used in classification.

2. (5 points) Express the BIC score as a function of the counts n+
i , n−i , ni, n.

We have provided you with partial MATLAB code to test the Bayesian and BIC scores in
practice. The data represent the same vowel prediction task as in Problem Set 4. You can
load the data with ’load hw4 p1.mat’, giving you data.

3. (10 points) The Matlab functions log bayesian model score.m and bic model score.m

need to be completed to compute the logarithm of the Bayesian score as derived in
Part 2., and the BIC score you derived in Part 4, respectively. The functions receive
as parameters the vectors of n+

i ’s and n−i ’s for the incomplete nodes only. To test the
completed functions train and plot the following two PST’s:

plot pst(build pst(data, @log bayesian model score))

plot pst(build pst(data, @bic model score))

(For your reference, the PST’s are trained by greedily extending them from the root
edge by edge until no edge can be added without decreasing the model score.)

Hand in the printouts of log bayesian model score.m and bic model score.m and
of the two plots. Note the the BIC tree is a subset of the Bayesian tree.

The command generate plot.m compares the PST’s in Figure 1 by their log-Bayesian
model score and BIC model score. Specifically, for each of the two scores we compute the
difference between the score of the more complex and the score of the simpler model. We
would select the more complex model if and only if this difference is positive.

For a given number of samples in the range [0, 3000], generate plot.m computes the
average difference produced by each of the two scores on 500 random selections of the
sample. It then plots the average difference divided by the number of samples (because
both the Bayesian score and the BIC score increase asymptotically linearly with the number
of samples).

4. (10 points) Run generate plot and hand in the printout of the produced figure (it
may take a couple of minutes to run). Briefly explain the following observations in
terms of their significance to model selection:
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Figure 1: Models compared in Problem 1 Part 4

– each curve is negative for small sample size

– the curve generated by the Bayesian score becomes positive for smaller sample
size than the curve generated by the BIC score

– at large sample size the two curves converge to each other

– at large sample size the curves become horizontal

Problem 2: EM algorithm

In this problem, we will study the use of the Expectation Maximisation (EM) algorithm
for solving estimation problem involving hidden variables.

A mixture of m Gaussians model, for example, is a simple hidden or latent variable model

p(x; θ) =
m∑

j=1

pjN(x; µj,Σj) (6)

The distinction between hidden and observed variables depends on the data we expect to
see in estimating these models. In a typical setting, we observe only x samples and the
corresponding choices of the mixture components remain hidden. Thus x is an observed
(vector valued) variable, while j is hidden.

A direct optimization of latent variable models is often difficult since the likelihood of
the data involves summations over the values of the hidden variables. Specifically, in the
log-likelihood of the data for a mixture of m Gaussians

l(x1, . . . ,xn; θ) = log
n∏

i=1

p(xi; θ) =
n∑

i=1

log
m∑

j=1

pjN(xi; µj,Σj) (7)

the summation over the mixture components appear inside the logarithm, coupling the
means and covariances of the Gaussian components.
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Suppose for a moment that we also observed the selections of the mixture components,
j1, . . . , jn, in addition to x1, . . . ,xn. In this case we could write down the complete log-
likelihood of the data

lc(x1, . . . ,xn, j1, . . . , jn; θ) =
n∑

i=1

log
(
pji

N(xi; µji
,Σji

)
)

(8)

where each sample (xi, ji) contains a value assignment to all the variables in the model.
The means and covariances of the Gaussians, along with the mixing proportions, could now
be estimated independently of each other.

Given only x1, . . . ,xn, we can nevertheless use the current setting of the model parameters,
θk, to infer what the mixture selections would have been. In other words, we can evaluate
the expected complete log-likelihood:

Elc(θ; θ
k) = E

{
lc(x1, . . . ,xn, j1, . . . , jn; θ)

∣∣x1, . . . ,xn, θ
k
}

(9)

=
n∑

i=1

E
{

log
(
pji

N(xi; µji
,Σji

)
) ∣∣xi, θ

k
}

(10)

=
n∑

i=1

m∑
j=1

P (j|xi, θ
k) log

(
pjN(xi; µj,Σj)

)
(11)

where the expectations are over j1, . . . , jn given θk and x1, . . . ,xn. Elc(θ; θ
k) should be

viewed as a function of possible new settings of parameters

θ = {p1, . . . , pm, µ1, . . . , µm, Σ1, . . . , Σm} (12)

for a fixed θk and x1, . . . ,xn (which we have suppressed in the notation). Evaluating the
expected complete log-likelihood for a hidden variable model as a function of possible new
parameters θ defines the E-step of the EM algorithm.

The M-step of the EM algorithm corresponds simply to finding θk+1 that maximize the
expected complete log-likelihood:

θk+1 = arg max
θ

Elc(θ; θ
k) (13)

This estimation step is again easy, as if we had complete (but weighted) data.

More generally, we don’t actually need to solve for the parameters θk+1 that exactly max-
imize the expected complete log-likelihood in the M-step. To guarantee that the log-
likelihood of the observed data increases after every M-step, it suffices to find any θk+1 for
which

Elc(θ
k+1; θk) > Elc(θ

k; θk) (14)

When we settle for a suboptimal θk+1, with the above constraint, the M-step is known as
a generalized M-step.
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Let us now turn to a slightly more complicated hidden variable density model. Specifically,
we define a one dimensional density p(x; θ), x ∈ <, in terms of two hidden variables

p(x; θ) =
m∑

j=1

l∑
k=1

pjqkN(x; µj, σ
2
k) (15)

where θ = {p1, . . . , pm, µ1, . . . , µm, q1, . . . , ql, σ
2
1, . . . , σ

2
l }. We could view this as a simple

mixture model with ml Gaussian components indexed by (j, k). However, unlike be-
fore, the parameters of the ml components cannot be set independently. For example,
there are only m possible means, not ml. Alternatively, we could view this as a mixture
of m non-Gaussian components, where each component distribution is a scale mixture,
p(x|j; θ) =

∑l
k=1 qkN(x; µj, σ

2
k), combining Gaussians with different variances (scales).

These m components are again not parameterized independently of each other.

As a hidden variable model, p(x; θ) in eq. (15) can be estimated from samples x1, . . . , xn

via the EM algorithm. For this purpose, we will have to evaluate the expected complete
log-likelihood (E-step) and solve for the parameters in the (generalized) M-step.

1. (5 points) Provide the expression for the posterior probability over the hidden vari-
ables given xi and θk (current setting of the model parameters).

2. (5 points) Write down the portion of the expected complete log-likelihood that per-
tains to the new mean parameters µ1, . . . , µm we intend to find in the M-step. The
dependence on these means should be made explicit.

3. (5 points) Solving the M-step for the maximizing parameters θk+1 would require us
to jointly optimize the means µ1, . . . , µm and the variances σ2

1, . . . , σ
2
l in this case.

We can, however, easily specify a simpler generalized M-step: solve for µj’s given
fixed σ2

k’s, and subsequently solve for σ2
k’s given the new values of µj’s. Provide an

expression for the maximizing µj’s given fixed σ2
1, . . . , σ

2
l .

4. (10 points) We have provided you with MATLAB code to test the new latent variable
model. Load p2data.mat into MATLAB to get n = 300 samples x drawn from
distribution trueparam (also provided). Estimate the parameters θ of the latent
variable model via the EM-algorithm, param = em(x,m,l), using m = 1, . . . , 4, and
l = 1, 2, 3. Plot the samples, estimated density, and the data generating distribution
using
plotdensity(x,param,’b’); hold on;

plotdensity(x,trueparam,’r’); hold off;

You may have to run the EM-algorithm for a few times to get the best results for each
combination (m, l) as the initial parameters are selected at random. Provide a brief
explanation why there might be a difference in the approximation quality between
setting l = 1 (single variance parameter) and l > 1, even if m can take different
values.
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Problem 3: Spectral Clustering

In this problem, we experiment with two types of clustering methods—k-means and spectral
clustering—and compare their performance on two different data sets. We have provided
you with Matlab code to perform k-means clustering (kmeans.m) and spectral clustering
(spectral.m), as well as two 2-dimensional data sets X1.mat and X2.mat. The function
plotclust(X,y) will help you visualise the clusters.

1. (10 points) Run k−means clustering on both data sets, with k = 2. Since the ini-
tialisation of the 2 means is random, different runs of the algorithm may produce
different results. Turn in a typical plot of the clusters obtained. Compare the results
in each case with what you expect to be the correct answer (when searching for 2
clusters).

2. (10 points) Perform spectral clustering on both data sets, with r = 5 and r = 20
(where r is the number of nearest neighbours considered when building the graph).
Turn in plots of the clusters in these cases. Compare the results in each case with
what you expect to be the correct answer (when searching for 2 clusters), and with
the result obtained from k−means clustering. Explain the behaviour of spectral
clustering in each case.
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