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Topics
• Complexity and generalization

– finite set of classifiers
– VC-dimension, learning
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Why care about “complexity”?
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• We need a quantitative measure of complexity in order to be
able to relate the training error (which we can observe) and
the test error (that we’d like to optimize)
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Finite case
• We’ll start by considering only a finite number of possible

classifiers, h1(x), . . . , hM(x) (e.g., randomly chosen linear
classifiers)

• Key questions:

1. Given n training examples and M possible classifiers how
far can the training and test errors be?

2. How many training examples do we need so that the errors
are close?

The answers will depend on M .
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Finite case: definitions

Ên(i) =
1
n

n∑
t=1

= 0, 1︷ ︸︸ ︷
Loss(yt, hi(xt)) = empirical error of hi(x)

E(i) = E(x,y)∼P { Loss(y, hi(x)) } = expected error of hi(x)
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Finite case: definitions

Ên(i) =
1
n

n∑
t=1

= 0, 1︷ ︸︸ ︷
Loss(yt, hi(xt)) = empirical error of hi(x)

E(i) = E(x,y)∼P { Loss(y, hi(x)) } = expected error of hi(x)

• Suppose we choose the classifier that minimizes the training
error, în = argmini=1,...,M Ên(i), then

Training error = Ên(̂in)

Test error = E (̂in)
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Finite case: errors
• The training and test errors,

Training error = Ên(̂in)

Test error = E (̂in)

are necessarily close if we can show that the errors are close
for all the classifiers in our set:

|Ên(i)− E(i)| ≤ ε, for all i = 1, . . . ,M

• We can now express our key questions more formally in terms
of n, M , and ε
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Finite case: key questions revisited
• Key questions (rewritten):

1. Given n training examples and M possible classifiers, what
is the smallest ε such that

max
i=1,...,M

|Ên(i)− E(i)| ≤ ε

2. For a given ε how many training examples do we need so
that

max
i=1,...,M

|Ên(i)− E(i)| ≤ ε

Since training examples are sampled at random from some
underlying distribution, we can only answer these questions
probabilistically.
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Finite case: errors
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Finite case: probabilistic statement
• We can relate n, M , and ε by requiring that with high

probability, the empirical errors of all the classifiers in our set
are ε-close to their expected errors:

P
(

max
i=1,...,M

|Ên(i)− E(i)| ≤ ε
)
≥ 1− δ

The probability is taken over the choice of the training set and
1− δ specifies our confidence in the probabilistic statement.
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Finite case: probabilistic statement
• We can relate n, M , and ε by requiring that with high

probability, the empirical errors of all the classifiers in our set
are ε-close to their expected errors:

P
(

max
i=1,...,M

|Ên(i)− E(i)| ≤ ε
)
≥ 1− δ

The probability is taken over the choice of the training set and
1− δ specifies our confidence in the probabilistic statement.

• Equivalently, we can bound the probability that the empirical
error of some classifier in our set deviates more than ε from
the expected error:

P
(

max
i=1,...,M

|Ên(i)− E(i)| > ε
)
≤ δ
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Finite case cont’d
• Let’s fix n, M , and ε and try to find δ so that

P
(

max
i=1,...,M

|Ên(i)− E(i)| > ε
)
≤ δ

still holds. The probability is take over the choice of the
training set.
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Finite case cont’d
• Let’s fix n, M , and ε and try to find δ so that

P
(

max
i=1,...,M

|Ên(i)− E(i)| > ε
)
≤ δ

still holds. The probability is take over the choice of the
training set.

By using the fact that P (A or B) ≤ P (A) + P (B) we get

P
(
max

i
|Ên(i)− E(i)| > ε

)
≤

M∑
i=1

P
(
|Ên(i)− E(i)| > ε

)
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Finite case cont’d
• Let’s fix n, M , and ε and try to find δ so that

P
(

max
i=1,...,M

|Ên(i)− E(i)| > ε
)
≤ δ

still holds. The probability is take over the choice of the
training set.

By using the fact that P (A or B) ≤ P (A) + P (B) we get

P
(
max

i
|Ên(i)− E(i)| > ε

)
≤

M∑
i=1

P
(
|Ên(i)− E(i)| > ε

)
≤

M∑
i=1

2 exp(−2nε2) (Chernoff)
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Finite case cont’d
• Let’s fix n, M , and ε and try to find δ so that

P
(

max
i=1,...,M

|Ên(i)− E(i)| > ε
)
≤ δ

still holds. The probability is take over the choice of the
training set.

By using the fact that P (A or B) ≤ P (A) + P (B) we get

P
(
max

i
|Ên(i)− E(i)| > ε

)
≤

M∑
i=1

P
(
|Ên(i)− E(i)| > ε

)
≤

M∑
i=1

2 exp(−2nε2) (Chernoff)

= M · 2 exp(−2nε2) = δ
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Finite case cont’d
• We are now able to relate n, M , ε, and δ:

M · 2 exp(−2nε2) = δ, or ε =

√
log(M) + log(2/δ)

2n

• We can restate our result in terms of a bound on the expected
error of any classifier in our set.

Theorem: With probability at least 1− δ over the choice of
the training set, for all i = 1, . . . ,M

E(i) ≤ Ên(i) + ε(n, M, δ)

where ε = ε(n, M, δ) is a “complexity penalty”.

Tommi Jaakkola, MIT CSAIL 16

Measures of complexity
• Typically the set of classifiers is not a finite nor a countable

set (e.g., the set of linear classifiers)

• There are still many ways of trying to capture the “effective”
number of classifiers in such a set:

– degrees of freedom (number of parameters)
– Vapnik-Chervonenkis (VC) dimension
– description length

etc.
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VC-dimension: preliminaries
• A set of classifiers F: For example, this could be the set

of all possible linear classifiers, where h ∈ F means that

h(x) = sign
(
w0 + wT

1 x
)

for some values of the parameters w0,w1.
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VC-dimension: preliminaries
• Complexity: how many different ways can we label n

training points {x1, . . . ,xn} with classifiers h ∈ F?

In other words, how many distinct binary vectors

[h(x1) h(x2) . . . h(xn)]

do we get by trying out each h ∈ F in turn?

[ -1 1 . . . 1 ] h1

[ 1 -1 . . . 1 ] h2

. . .
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VC-dimension: shattering
• A set of classifiers F shatters n points {x1, . . . ,xn} if

[h(x1) h(x2) . . . h(xn)], h ∈ F

generates all 2n distinct labelings.

• Example: linear decision boundaries shatter (any) 3 points
in 2D
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VC-dimension: shattering cont’d
• We cannot shatter any set of 4 points in 2D with linear

classifiers. For example, we cannot generate the following
XOR-labeling:

x
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• More generally: the set of all d-dimensional linear classifiers
can shatter exactly d + 1 points
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VC-dimension: shattering cont’d
• We cannot shatter any set of 4 points in 2D with linear

classifiers. For example, we cannot generate the following
XOR-labeling:
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• More generally: the set of all d-dimensional linear classifiers
can shatter exactly d + 1 points

• Definition: The VC-dimension dV C of a set of classifiers F
is the number of points F can shatter
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Learning and VC-dimension
• We learn something only after we no longer can shatter the

training points (have more than dV C training examples)

Rationale: suppose we have n training examples and labels
(x1, y1), . . . , (xn, yn) and n < dV C. Does the training set
constrain our prediction for xn+1?

Because we expect to be able to shatter n+1 points (≤ dV C)
it follows that we can find h1, h2 ∈ F , both consistent with
training labels, but

h1(xn+1) = 1, h2(xn+1) = −1

We therefore cannot determine which label to predict for
xn+1.
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Learning and VC-dimension
• We learn something only after we no longer can shatter the

training points (have more than dV C training examples)
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