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Esan Machine learning: lecture 13

Tommi S. Jaakkola
MIT CSAIL
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‘7i‘CSAIL TOpiCS
e Sequential prediction and description length
— minimum description length principle (MDL), asymptotic
expansion
e Probability models and structure
— mixing, mixtures, and the EM-algorithm

Tommi Jaakkola, MIT CSAIL 2
v i
(Wm! ] . - - - |Fal ] - . - -
“CsAlL Fair sequential prediction “CsalL Fair sequential prediction
e We wish to predict (generate) labels yi,...,y, associated e We wish to predict (generate) labels i, ..., y, associated
with input examples 1, ..., Zy,. with input examples z1, ..., Zn.

e In a fair sequential prediction we predict each label based on
the corresponding input and preceding labels and examples

y1 is predicted based on x; alone
yo is predicted based on xo and Dy = {(z1,91)}
ys is predicted based on x3 and Dy = {(z1,91), (z2,92)}
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e In a fair sequential prediction we predict each label based on
the corresponding input and preceding labels and examples

y1 is predicted based on x; alone
Plyker) = [ Plunler,6)P(0)ds
y2 is predicted based on x2 and Dy = {(z1,91)}
P(ya|z2, D1) = /P(y2\5027'9)P(9\D1)d9
ys is predicted based on 3 and Do = {(21,91), (2, 42)}

Plyslaes, D) = / Pysls, 6)P(6] Dy)do
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Sosan Fair sequential prediction

e Qur fair sequential prediction method defines a wvalid
probability distribution over the training labels given the
examples:

P(yl|$1)P(92\-’627D1)P(y3|$3’D2)'"P(yn\iﬁmanl)
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Sosan Fair sequential prediction

e Qur fair sequential prediction method defines a wvalid
probability distribution over the training labels given the
examples:

P(yl|$1)P(92\-’627D1)P(y3|$3’D2)'"P(yn\iﬁmanl)

This distribution does not depend on the order in which we
processed the examples and, in fact, is equal to Bayesian
marginal likelihood:

/ P(il1,6) - P(yalzn, 6)P(6)d6
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Sosan Fair sequential prediction
e Qur fair sequential prediction method defines a wvalid
probability distribution over the training labels given the
examples:

M
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P(y1|$1)P(y2\m2,D1)P(y3|$3,D2)--~P(yn\men71)

How well this distribution predicts the training labels depends
on the “complexity” of the model P(y|z,0), 8 € © and how
appropriate the prior P(0) is.
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Sosan Fair sequential prediction

e Qur fair sequential prediction method defines a valid
probability distribution over the training labels given the
examples:

P(y1|$1)P(y2\m2,D1)P(y3|$3,D2)--~P(yn\men71)

How well this distribution predicts the training labels depends

on the “complexity” of the model P(y|z,0), 8 € © and how

appropriate the prior P(f) is.

— if the model is too flexible: the posterior P(6|D;_1)
requires many training examples before it focuses on useful
parameter values
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R Fair sequential prediction
e Qur fair sequential prediction method defines a valid
probability distribution over the training labels given the
examples:

P(y1|$1)P(y2\m2,D1)P(y3|$3,D2)--~P(yn\men71)

How well this distribution predicts the training labels depends
on the “complexity” of the model P(y|z,0), 8 € © and how

Sosan Description length and probabilities

e If we can predict the training labels with high probability,
then we can communicate them effectively (with few bits)

It takes —log, P(y1, - - -, Yn) bits to communicate y1, ..., yn
according to distribution P.

Example: suppose each configuration (y1,¥2,ys) is equally
likely according to P

. . . Ist bit
appropriate the prior P(0) is.
— if the model is too flexible: the posterior P(6|D;_1) ond bit
requires many training examples before it focuses on useful
parameter values 3rd bit
— if the model is too simple: the posterior concentrates 000001 010 011 100 101 110 111
quickly but the predictions remain poor We need —log, P(y1,y2,y3) = —logy(1/8) = 3 bits to
describe each y.
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can Description length and model selection CsAIL Asymptotic approximation

e We need
~1og, [ Plular, ) Plunle.0)P(0)ds
bits to communicate labels y1,...,y, given examples
x1,...,T, with a model P(y|z,0),6 € © and prior P(6).

e Minimum description length (MDL) principle:
We select the model+prior combination that requires the
fewest number of bits (maximizes the Bayesian marginal
likelihood)
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e For large n we can use the following asymptotic expansion:

~ DL of data ~ DL of model

n

R a_/h
Z (* log, P(yi|xi79)) + 510g2(n)

=1

where 6 is the maximum likelihood setting of the parameters
and d is the effective number of parameters in the model.

The negative of this is also known as the Bayesian information
criterion or BIC for short.
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Sosan Description length: example
e Example: polynomial logistic regression, n = 100

linear quadratic

n

Z (f log, P(yilxi, é)) + glog2(n)

i=1

Sosan Description length: example

e Example: polynomial logistic regression, n = 100

linear quadratic

n

S (~loma Plyixi, 0)) + 5 log(n)

i=1

degree # param DL(data) DL(model) MDL score

1 3 5.6 bits 9.9 bits 15.5 bits
2 6 2.4 bits 19.9 bits 22.3 bits
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oA Topics oA What are we missing?

e Sequential prediction and description length
— minimum description length principle (MDL), asymptotic
expansion

e Probability models and structure
— mixing, mixtures, and the EM-algorithm
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e So far we have solved simple binary classification problems,
predicting y given x, by estimating
— discriminant functions (e.g., SVMs and boosting)
— conditional probabilities (e.g., logistic regression)

e What about problems where

— we have to predict multiple inter-connected labels for each
input example (e.g., a set of topics for a document)

— we have to switch between classifiers in the course of
making predictions (e.g., changes in market conditions)

— the inputs are incomplete in the sense that some of the
components are missing (e.g., patient records)

— the input examples come in different potentially unobserved
types (e.g., mixed populations)
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T Structure and mixtures
o |f we wish to take into account the fact that there are different
underlying types of examples, we have to first identify them

e We can hypothesize that
1. there are m underlying typesy =1,...,m
2. each type y occurs with frequency P(y)
3. examples of type y are governed by distribution p(x|y)

e According to this model each observed example x can be
assumed to have come from a “mixture distribution”:

p(x) = Z Py = j)p(xly = j)

e We need to parameterize and estimate such models from
samples X1, ...,X,
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S Mixture densities

e A mixture of Gaussians model
p(x10) = p;p(x|u;, %)
i=1

where 0 = {p1,...,Dm, 1415 - - -, oy 215 - - -, 2} CONtains all
the parameters of the mixture model. {p;} are known as
mixing proportions or coefficients.
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A Mixture densities
e Data generation process:

Ply) ?

o
¥
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y= y=2 D

p(xly=1)  pxly=2)

p(x|0) = Z pj - p(x|p;,X;)  (mixture of Gaussians)
j=1,2

e Any data point x could have been generated in two ways; the
component responsible for generating x needs to be inferred.

PRy
oA Mixture density estimation
e Suppose we want to estimate a two component mixture of

Gaussians model.
p(x]0) = p1p(x|p1, X1) + p2 p(x|p2, X2)

o If each example x; in the training set were labeled y; =
1,2 according to which mixture component (1 or 2) had
generated it, then the estimation would be easy.

Labeled examples = no credit assignment problem
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“CsAlL Mixture density estimation “saiMlixture density estimation: credit assignment
e When exa.mples ars (;Iabelfed, 2 e%‘g«i%gu . e Of course we don't have such labels ... but we can guess what
we can estimate each Gaussian D*;E’%?’jf'w the labels might be based on our current mixture distribution
independently £t
o e e We can, for example, evaluate the posterior probability

e Let 4(jl¢) be an indicator
function of whether example ¢ is
labeled j. Then for each j = 1,2

pj — @7 where 7; = 26(3\1)
" i=1
o L
= D) xs
Hj i 2 J i

I~ " X
i = D0 (ki — )i — )"
7 =1
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that an observed x was generated from the first mixture
component
Ply=1) pxly=1)
Zj:l,Q Py =j)-p(xly = j)
p1p(x|p, X1)
21,205 P(X[py, ;)

P(y = 1|X79) =

This solves the credit assignment problem
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25 Mixture density estimation: credit assignment

e We get soft labels or posterior
probabilities of which Gaussian
generated which example:

pjli) — Ply: = jlxi, 0)

where 37, ,p(jli) =1 for all
i=1,...,n.
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25 Mixture density estimation: credit assignment

e We get soft labels or posterior
probabilities of which Gaussian
generated which example:

pjli) — Ply: = jlxi, 0)

where 37, ,p(jli) =1 for all
i=1,...,n.

e When the Gaussians are almost identical (as in the figure),
p(1]i) ~ p(2]7) for almost any available point x;.

Even slight differences can help us determine how we should
modify the Gaussians.
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Mixture density estimation: example

oA The EM algorithm: iteration &
E-step: softly assign examples to mixture components
p(jli) — P(yi = j|xi,8%)), forallj=1,2andi=1,...,n
M-step: estimate new mixture parameters #(*+1) based on
the soft assignments (can be done separately for the two
Gaussians)
s n g
5, ny he= S "Bl
by = where 1i; —Zp(]\z)
i=1
1 n
Ay > il
i=1
n
- af o] N A NT
X = 5 20 POl (i = i) (xi = )
7 i=1 2
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“CsAlL “CsAlL Mixture density estimation
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Sean The EM-algorithm

e Each iteration of the EM-algorithm monotonically increases

the (log-)likelihood of the n training examples x1, ..., X,:
n p(xi0™*)

log p(data |6)) = " log (plpmml, 1) + p2p(Xil iz, 32)
i=1

where 0%) = {py. po, ju1, fi2, $1, Lo} specifies the parameters
of the mixture model at the k" iteration.
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