

Machine learning: lecture 13

Tommi S. Jaakkola MIT CSAIL tommi@csail.mit.edu

Topics

- Sequential prediction and description length
- minimum description length principle (MDL), asymptotic expansion
- Probability models and structure
 - mixing, mixtures, and the EM-algorithm

Tommi Jaakkola, MIT CSAIL

Fair sequential prediction

- We wish to predict (generate) labels y_1, \ldots, y_n associated with input examples x_1, \ldots, x_n .
- In a fair sequential prediction we predict each label based on the corresponding input and preceding labels and examples

```
y_1 is predicted based on x_1 alone y_2 is predicted based on x_2 and D_1=\{(x_1,y_1)\} y_3 is predicted based on x_3 and D_2=\{(x_1,y_1),(x_2,y_2)\} \dots
```

Tommi Jaakkola, MIT CSAIL

Fair sequential prediction

- We wish to predict (generate) labels y_1, \ldots, y_n associated with input examples x_1, \ldots, x_n .
- In a fair sequential prediction we predict each label based on the corresponding input and preceding labels and examples

 y_1 is predicted based on x_1 alone

$$P(y_1|x_1) = \int P(y_1|x_1, \theta) P(\theta) d\theta$$

 y_2 is predicted based on x_2 and $D_1 = \{(x_1, y_1)\}$

$$P(y_2|x_2, D_1) = \int P(y_2|x_2, \theta) P(\theta|D_1) d\theta$$

 y_3 is predicted based on x_3 and $D_2 = \{(x_1, y_1), (x_2, y_2)\}$

$$P(y_3|x_3, D_2) = \int P(y_3|x_3, \theta) P(\theta|D_2) d\theta$$

Tommi Jaakkola, MIT CSAIL

Fair sequential prediction

 Our fair sequential prediction method defines a valid probability distribution over the training labels given the examples:

$$P(y_1|x_1)P(y_2|x_2,D_1)P(y_3|x_3,D_2)\cdots P(y_n|x_n,D_{n-1})$$

Fair sequential prediction

 Our fair sequential prediction method defines a valid probability distribution over the training labels given the examples:

$$P(y_1|x_1)P(y_2|x_2, D_1)P(y_3|x_3, D_2)\cdots P(y_n|x_n, D_{n-1})$$

This distribution does not depend on the order in which we processed the examples and, in fact, is equal to *Bayesian marginal likelihood:*

$$\int P(y_1|x_1,\theta)\cdots P(y_n|x_n,\theta)P(\theta)d\theta$$

Tommi Jaakkola, MIT CSAIL

Tommi Jaakkola, MIT CSAIL

Fair sequential prediction

 Our fair sequential prediction method defines a valid probability distribution over the training labels given the examples:

$$P(y_1|x_1)P(y_2|x_2,D_1)P(y_3|x_3,D_2)\cdots P(y_n|x_n,D_{n-1})$$

How well this distribution predicts the training labels depends on the "complexity" of the model $P(y|x,\theta),\ \theta\in\Theta$ and how appropriate the prior $P(\theta)$ is.

Fair sequential prediction

 Our fair sequential prediction method defines a valid probability distribution over the training labels given the examples:

$$P(y_1|x_1)P(y_2|x_2,D_1)P(y_3|x_3,D_2)\cdots P(y_n|x_n,D_{n-1})$$

How well this distribution predicts the training labels depends on the "complexity" of the model $P(y|x,\theta),\ \theta\in\Theta$ and how appropriate the prior $P(\theta)$ is.

– if the model is *too flexible*: the posterior $P(\theta|D_{i-1})$ requires many training examples before it focuses on useful parameter values

Tommi Jaakkola, MIT CSAIL

11

Tommi Jaakkola, MIT CSAIL

.

Fair sequential prediction

 Our fair sequential prediction method defines a valid probability distribution over the training labels given the examples:

$$P(y_1|x_1)P(y_2|x_2, D_1)P(y_3|x_3, D_2)\cdots P(y_n|x_n, D_{n-1})$$

How well this distribution predicts the training labels depends on the "complexity" of the model $P(y|x,\theta)$, $\theta\in\Theta$ and how appropriate the prior $P(\theta)$ is.

- if the model is too flexible: the posterior $P(\theta|D_{i-1})$ requires many training examples before it focuses on useful parameter values
- if the model is too simple: the posterior concentrates quickly but the predictions remain poor

Tommi Jaakkola, MIT CSAIL

ola, MIT CSAIL

Description length and probabilities

- If we can predict the training labels with high probability, then we can communicate them effectively (with few bits)
- It takes $-\log_2 P(y_1, \dots, y_n)$ bits to communicate y_1, \dots, y_n according to distribution P.

Example: suppose each configuration (y_1,y_2,y_3) is equally likely according to ${\cal P}$

We need $-\log_2 P(y_1,y_2,y_3) = -\log_2(1/8) = 3$ bits to describe each y.

Tommi Jaakkola, MIT CSAIL 10

Description length and model selection

• We need

$$-\log_2 \int P(y_1|x_1,\theta)\cdots P(y_n|x_n,\theta)P(\theta)d\theta$$

bits to communicate labels y_1, \ldots, y_n given examples x_1, \ldots, x_n with a model $P(y|x, \theta), \theta \in \Theta$ and prior $P(\theta)$.

• Minimum description length (MDL) principle:

We select the model+prior combination that requires the fewest number of bits (maximizes the Bayesian marginal likelihood)

9

Asymptotic approximation

ullet For large n we can use the following asymptotic expansion:

$$\underbrace{\sum_{i=1}^{n} \left(-\log_2 P(y_i|\mathbf{x}_i, \hat{\theta})\right)}_{} + \underbrace{\frac{DL \text{ of model}}{2} \log_2(n)}$$

where $\hat{\theta}$ is the maximum likelihood setting of the parameters and d is the effective number of parameters in the model.

• The negative of this is also known as the *Bayesian information* criterion or BIC for short.

Tommi Jaakkola, MIT CSAIL 11

Tommi Jaakkola, MIT CSAIL

12

Description length: example

• Example: polynomial logistic regression, n=100

Tommi Jaakkola, MIT CSAIL

13

Description length: example

ullet Example: polynomial logistic regression, n=100

degree# paramDL(data)DL(model)MDL score135.6 bits9.9 bits15.5 bits262.4 bits19.9 bits22.3 bits

Tommi Jaakkola, MIT CSAIL 14

Topics

- Sequential prediction and description length
 - minimum description length principle (MDL), asymptotic expansion
- Probability models and structure
 - mixing, mixtures, and the EM-algorithm

What are we missing?

- So far we have solved simple binary classification problems, predicting y given x, by estimating
 - discriminant functions (e.g., SVMs and boosting)
- conditional probabilities (e.g., logistic regression)
- What about problems where
- we have to predict multiple inter-connected labels for each input example (e.g., a set of topics for a document)
- we have to switch between classifiers in the course of making predictions (e.g., changes in market conditions)
- the inputs are incomplete in the sense that some of the components are missing (e.g., patient records)
- the input examples come in different potentially unobserved types (e.g., mixed populations)

Tommi Jaakkola, MIT CSAIL

15

Tommi Jaakkola, MIT CSAIL

16

18

Structure and mixtures

- If we wish to take into account the fact that there are different underlying types of examples, we have to first identify them
- We can hypothesize that
- 1. there are m underlying types $y = 1, \ldots, m$
- 2. each type y occurs with frequency P(y)
- 3. examples of type y are governed by distribution $p(\mathbf{x}|y)$
- According to this model each observed example x can be assumed to have come from a "mixture distribution":

$$p(\mathbf{x}) = \sum_{j=1}^{m} P(y=j)p(\mathbf{x}|y=j)$$

• We need to parameterize and estimate such models from samples $\mathbf{x}_1, \dots, \mathbf{x}_n$

Mixture densities

• A mixture of Gaussians model

$$p(\mathbf{x}|\theta) = \sum_{i=1}^{m} p_j p(\mathbf{x}|\mu_j, \Sigma_j)$$

where $\theta=\{p_1,\ldots,p_m,\mu_1,\ldots,\mu_m,\Sigma_1,\ldots,\Sigma_m\}$ contains all the parameters of the mixture model. $\{p_j\}$ are known as mixing proportions or coefficients.

Tommi Jaakkola, MIT CSAIL 17 Tommi Jaakkola, MIT CSAIL

Mixture densities

Data generation process:

$$p(\mathbf{x}|\theta) = \sum_{j=1,2} p_j \cdot p(\mathbf{x}|\mu_j, \Sigma_j)$$
 (mixture of Gaussians)

 Any data point x could have been generated in two ways; the component responsible for generating x needs to be inferred.

Tommi Jaakkola, MIT CSAIL

Mixture density estimation

 Suppose we want to estimate a two component mixture of Gaussians model.

$$p(\mathbf{x}|\theta) = p_1 p(\mathbf{x}|\mu_1, \Sigma_1) + p_2 p(\mathbf{x}|\mu_2, \Sigma_2)$$

• If each example \mathbf{x}_i in the training set were labeled $y_i=1,2$ according to which mixture component (1 or 2) had generated it, then the estimation would be easy.

Labeled examples ⇒ no credit assignment problem

Tommi Jaakkola, MIT CSAIL

Mixture density estimation

- When examples are labeled, we can estimate each Gaussian independently
- Let $\delta(j|i)$ be an indicator function of whether example i is labeled j. Then for each j=1,2

$$\hat{p}_j \leftarrow \frac{\hat{n}_j}{n}$$
, where $\hat{n}_j = \sum_{i=1}^n \delta(j|i)$

$$\hat{\mu}_j \leftarrow \frac{1}{\hat{n}_j} \sum_{i=1}^n \delta(j|i) \mathbf{x}_i$$

$$\hat{\Sigma}_j \leftarrow \frac{1}{\hat{n}_j} \sum_{i=1}^n \delta(j|i) (\mathbf{x}_i - \hat{\mu}_j) (\mathbf{x}_i - \hat{\mu}_j)^T$$

Tommi Jaakkola, MIT CSAIL

21

19

Mixture density estimation: credit assignment

- Of course we don't have such labels ... but we can guess what the labels might be based on our current mixture distribution
- \bullet We can, for example, evaluate the posterior probability that an observed ${\bf x}$ was generated from the first mixture component

$$P(y = 1|\mathbf{x}, \theta) = \frac{P(y = 1) \cdot p(\mathbf{x}|y = 1)}{\sum_{j=1,2} P(y = j) \cdot p(\mathbf{x}|y = j)}$$
$$= \frac{p_1 p(\mathbf{x}|\mu_1, \Sigma_1)}{\sum_{j=1,2} p_j p(\mathbf{x}|\mu_j, \Sigma_j)}$$

This solves the credit assignment problem

Tommi Jaakkola, MIT CSAIL 22

Mixture density estimation: credit assignment

 We get soft labels or posterior probabilities of which Gaussian generated which example:

$$\hat{p}(j|i) \leftarrow P(y_i = j|\mathbf{x}_i, \theta)$$

where $\sum_{j=1,2} \hat{p}(j|i) = 1$ for all $i=1,\dots,n.$

Mixture density estimation: credit assignment

 We get soft labels or posterior probabilities of which Gaussian generated which example:

$$\hat{p}(j|i) \leftarrow P(y_i = j|\mathbf{x}_i, \theta)$$

where $\sum_{j=1,2} \hat{p}(j|i) = 1$ for all i=1 n

• When the Gaussians are almost identical (as in the figure), $\hat{p}(1|i) \approx \hat{p}(2|i)$ for almost any available point \mathbf{x}_i .

Even slight differences can help us determine how we should modify the Gaussians.

23

20

The EM algorithm: iteration k

E-step: softly assign examples to mixture components

$$\hat{p}(j|i) \leftarrow P(y_i = j|\mathbf{x}_i, \theta^{(k)}), \ \ \text{for all} \ j = 1, 2 \ \text{and} \ i = 1, \dots, n$$

M-step: estimate new mixture parameters $\theta^{(k+1)}$ based on the soft assignments (can be done separately for the two Gaussians)

$$\hat{p}_j \leftarrow \frac{\hat{n}_j}{n}, \text{ where } \hat{n}_j = \sum_{i=1}^n \hat{p}(j|i)$$

$$\hat{\mu}_j \leftarrow \frac{1}{\hat{n}_j} \sum_{i=1}^n \hat{p}(j|i) \mathbf{x}_i$$

$$\hat{\Sigma}_j \leftarrow \frac{1}{\hat{n}_j} \sum_{i=1}^n \hat{p}(j|i) (\mathbf{x}_i - \hat{\mu}_j) (\mathbf{x}_i - \hat{\mu}_j)^T$$

Tommi Jaakkola, MIT CSAIL

25

Mixture density estimation

Tommi Jaakkola, MIT CSAIL

The EM-algorithm

 Each iteration of the EM-algorithm monotonically increases the (log-)likelihood of the n training examples x₁,...,x_n:

$$\log p(\operatorname{data}|\theta^{(k)}) = \sum_{i=1}^n \log \left(\underbrace{p_1 p(\mathbf{x}_i|\mu_1, \Sigma_1) + p_2 p(\mathbf{x}_i|\mu_2, \Sigma_2)}_{p_1 p(\mathbf{x}_i|\mu_1, \Sigma_1) + p_2 p(\mathbf{x}_i|\mu_2, \Sigma_2)} \right)$$

where $\theta^{(k)}=\{p_1,p_2,\mu_1,\mu_2,\Sigma_1,\Sigma_2\}$ specifies the parameters of the mixture model at the k^{th} iteration.

Tommi Jaakkola, MIT CSAIL

29

27