Topics

- Finite mixture classifiers
 - class conditional mixtures
 - shared components model
 - conditional mixtures (mixtures of experts)

- Non-parametric mixtures
 - Parzen windows

- Clustering
Shared component mixtures

- We can also formulate (Gaussian) mixture models where the components may be shared across class labels:

\[
p(x, y|\theta) = \sum_{j=1}^{m} p_j p(x|\mu_j, \Sigma_j) P(y|j)
\]

In other words, each component is associated with a distribution \(P(y|j) \) over the class labels (each “type” has a specific distribution over labels)
Shared component mixtures: estimation

- The EM algorithm for these models only requires a few simple modifications

E-step: the posterior assignments (responsibilities) now also depend on the class labels:

$$
\hat{p}(j|i) = \frac{p_j^{(k)} p(x_i|\mu_j^{(k)}, \Sigma_j^{(k)}) P^{(k)}(y_i|j)}{p(x_i, y_i|\theta^{(k)})}
$$

M-step: remains the same for the Gaussian components; in addition, we update each $P(y|j)$ according to a weighted frequency of labels assigned to component j:

$$
P^{(k+1)}(y|j) = \frac{1}{\hat{n}_j} \sum_{i=1}^{n} \hat{p}(j|i) \delta(y_i, y)
$$

where $\delta(y_i, y) = 1$ if $y_i = y$ and zero otherwise.
Shared component mixtures: example
Topics

- Finite mixture classifiers
 - class conditional mixtures
 - shared components model
 - conditional mixtures (mixtures of experts)
- Non-parametric mixtures
 - Parzen windows
- Clustering
Conditional mixtures

- Many regression or classification problems can be decomposed into smaller (easier) sub problems

- Examples:
 - style in handwritten character recognition
 - dialect/accent in speech recognition
 - etc.

- Each sub-problem could be solved by a specific but relatively simple “expert”

- Unlike in mixtures we have seen so far, the selection of which expert to rely on now depends on the context (the input x); we will call such models mixtures of experts.
Experts (regression)

- Suppose we have several “experts” or component regression models generating conditional Gaussian outputs

\[p(y|x, \theta_j) = N(y; w_{j1}^T x + w_{j0}, \sigma_j^2) \]

where

- Mean of \(y \) given \(x \) = \(w_{j1}^T x + w_{j0} \)
- Variance of \(y \) given \(x \) = \(\sigma_j^2 \)

\(\theta_j = \{ w_{j1}, w_{j0}, \sigma_j^2 \} \) denotes the parameters of the \(j^{th} \) expert.

- We need to find an appropriate (input dependent) way of allocating tasks to these experts
Mixtures of experts

Example:

- Here we need to switch from one linear regression model to another at $x = 0$; the switch can be probabilistic.
Gating network

- A gating network specifies a distribution over m experts, conditionally on the input x.

- Example: when there are just two experts the gating network can be a logistic regression model

$$P(j = 1|x, \eta) = g(v_1^T x + v_0)$$

where $\eta = (v_1, v_0)$ and $g(z) = (1 + e^{-z})^{-1}$ is the logistic function.

- For $m > 2$, the gating network can be a softmax model

$$P(j|x, \eta) = \frac{\exp(v_{j1}^T x + v_{j0})}{\sum_{j' = 1}^m \exp(v_{j'1}^T x + v_{j'0})}$$

where $\eta = \{v_{11}, \ldots, v_{1m}, v_{10}, \ldots, v_{m0}\}$ denotes the parameters of the gating network.
Gating network: example divisions

\[P(j|x, \eta) = \frac{\exp(\mathbf{v}^T_{j1} \mathbf{x} + v_{j0})}{\sum_{j'=1}^{m} \exp(\mathbf{v}^T_{j'1} \mathbf{x} + v_{j'0})} \]
A mixture of experts model

- The distribution over possible outputs y given an input x is a conditional mixture model

$$P(y|x, \theta, \eta) = \sum_{j=1}^{m} P(j|x, \eta) p(y|x, \theta_j)$$

where η specifies the parameters of the gating network (e.g., logistic) and θ_j gives the parameters of the j^{th} expert (e.g., linear regression model).

- The selection of experts is made conditionally on the input

Tommi Jaakkola, MIT CSAIL
A mixture of experts model: estimation

- Similarly to mixture models, we now have to evaluate the posterior probability (here given both x_i AND y_i) that the output came from a particular expert:

$$
\hat{p}(j|i) = \frac{P(j|x_i, y_i, \eta^{(k)}, \theta^{(k)})}{\sum_{j'=1}^{m} P(j'|x_i, \eta^{(k)}) p(y_i|x_i, \theta^{(k)}_{j'})}
$$
EM for mixtures of experts

E-step: evaluate the posterior assignment probabilities $\hat{p}(j|i)$

M-step: separately re-estimate the experts and the gating network based on the posterior assignments:

1. For each expert j: find $\theta_j^{(k+1)}$ that maximize

$$\sum_{i=1}^{n} \hat{p}(j|i) \log P(y_i|x_i, \theta_j)$$

(e.g., linear regression, weighted training set)

2. For the gating network: find $\eta^{(k+1)}$ that maximize

$$\sum_{i=1}^{n} \sum_{j=1}^{m} \hat{p}(j|i) \log P(j|x_i, \eta)$$

(e.g., logistic regression, weighted training set)
Mixtures of experts: demo
Topics

- Finite mixture classifiers
 - class conditional mixtures
 - shared components model
 - conditional mixtures (mixtures of experts)

- Non-parametric mixtures
 - Parzen windows

- Clustering
Beyond parametric density models

- More mixture densities

We can approximate almost any distribution by including more and more components in the mixture model

\[p(x|\theta) = \sum_{j=1}^{m} p_j p(x|\mu_j, \Sigma_j) \]
Non-parametric densities

- We can even introduce one mixture component (Gaussian) per training example

\[\hat{p}(\mathbf{x}; \sigma^2) = \frac{1}{n} \sum_{i=1}^{n} p(\mathbf{x}|\mathbf{x}_i, \sigma^2 I) \]

where \(n \) is the number of examples.

The single parameter \(\sigma^2 \) controls the smoothness of the resulting density estimate.
1-dim case: Parzen windows

- We place a smooth Gaussian (or other) bump on each training example

\[
\hat{p}_n(x; \sigma) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{\sigma} K \left(\frac{x - x_i}{\sigma} \right), \quad \text{where}
\]

where the “kernel function” is

\[
K(z) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^2}{2}\right)
\]

(very different from SVM kernels).

\[
n = 50, \ \sigma = 0.02
\]
Parzen windows: variable kernel width

- We can also set the kernel width locally

 k-nearest neighbor choice: let d_{ik} be the distance from x_i to its k^{th} nearest neighbor

 $$\hat{p}_n(x; k) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{d_{ik}} K \left(\frac{x - x_i}{d_{ik}} \right)$$

- The estimate is smoother where there are only few data points
Parzen windows: optimal kernel width

- We still have to set the kernel width σ or the number of nearest neighbors k

- A practical solution: cross-validation

Let $\hat{p}_{-i}(x; \sigma)$ be a parzen windows density estimate constructed on the basis of $n - 1$ training examples leaving out x_i.

We select σ (or similarly k) that maximizes the leave-one-out log-likelihood

$$CV(\sigma) = \sum_{i=1}^{n} \log \hat{p}_{-i}(x_i; \sigma)$$
Topics

- Finite mixture classifiers
 - class conditional mixtures
 - shared components model
 - conditional mixtures (mixtures of experts)
- Non-parametric mixtures
 - Parzen windows
- Clustering
Finding structure in the data: clustering

- We can find structure in the data by isolating groups of examples that are similar in some well-defined sense.
Clustering results are crucially dependent on the measure of similarity (or distance) between the “points” to be clustered.