

Markov properties: example

- Data generation: successive states x_{1}, x_{2}, x_{3}, and x_{4} come from different clusters (colored) in a counter-clockwise manner.

Markov properties: example

- Data generation: successive states x_{1}, x_{2}, x_{3}, and x_{4} come from different clusters (colored) in a counter-clockwise manner.

- we could try to define state transitions by partitioning the space into regions that contain the clusters

Markov properties: example

- Data generation: successive states x_{1}, x_{2}, x_{3}, and x_{4} come from different clusters (colored) in a counter-clockwise manner.

- we could try to define state transitions by partitioning the space into regions that contain the clusters
- problem: overlapping clusters lead to ambiguity

chall

Markov properties: example

- Data generation: successive states x_{1}, x_{2}, x_{3}, and x_{4} come from different clusters (colored) in a counter-clockwise manner.

- we could try to define state transitions by partitioning the space into regions that contain the clusters
- problem: overlapping clusters lead to ambiguity
- we can resolve such ambiguities by looking at previous states (regions visited by the states)

Tommi Jaakkola, MIT CSAlL

Hidden Markov Models (HMMs)

- Hidden Markov models are Markov models with state dependent observations

HMM examples

- Two states 1 and 2; observations are tosses of unbiased coins

$$
P_{x}(x=\text { heads } \mid s=1)=0.5, \quad P_{x}(x=\text { tails } \mid s=1)=0.5
$$

$$
P_{x}(x=\text { heads } \mid s=2)=0.5, \quad P_{x}(x=\operatorname{tails} \mid s=2)=0.5
$$

- This model is unidentifiable from x-observations alone

HMM examples: biased outputs

- Two states 1 and 2; outputs are tosses of biased coins

$$
P_{x}(x=\text { heads } \mid s=1)=0.25, \quad P_{x}(x=\text { tails } \mid s=1)=0.75
$$

$$
P_{x}(x=\text { heads } \mid s=2)=0.75, \quad P_{x}(x=\text { tails } \mid s=2)=0.25
$$

- What type of output sequences do we get from this HMM model?

HMM problems

- There are several problems we have to solve

1. How do we evaluate the probability of an observation sequence $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$?

- forward-backward algorithm

2. How do we adapt the parameters of the HMM to better account for the observations?

- the EM-algorithm
- How do we uncover the most likely hidden state sequence corresponding to the observations?
- dynamic programming (Viterbi algorithm)

Forward-backward probabilities

Forward-backward probabilities

- Forward (predictive) probabilities $\alpha_{t}(i)$:

$$
\begin{aligned}
\alpha_{t}(i) & =P\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{t}, s_{t}=i\right) \\
\frac{\alpha_{t}(i)}{\sum_{j} \alpha_{t}(j)} & =P\left(s_{t}=i \mid \mathbf{x}_{1}, \ldots, \mathbf{x}_{t}\right)
\end{aligned}
$$

- Backward (diagnostic) propabilities $\beta_{t}(i)$:

$$
\beta_{t}(i)=P\left(\mathbf{x}_{t+1}, \ldots, \mathbf{x}_{n} \mid s_{t}=i\right)
$$

(evidence about the current state from future observations)

Forward probabilities

$\alpha_{1}(1)=P\left(x_{1}, s_{1}=1\right)$ $\alpha_{1}(2)=P\left(x_{1}, s_{1}=2\right)$

Forward probabilities

$\alpha_{1}(1)=P\left(x_{1}, s_{1}=1\right)$
$\alpha_{1}(2)=P\left(x_{1}, s_{1}=2\right)$

$$
\alpha_{1}(1)=P(1) P_{x}\left(\mathbf{x}_{1} \mid 1\right)
$$

Forward probabilities

$\alpha_{1}(1)=P\left(x_{1}, s_{1}=1\right)$
$\alpha_{1}(2)=P\left(x_{1}, s_{1}=2\right)$

$$
\begin{aligned}
& \alpha_{1}(1)=P(1) P_{x}\left(\mathbf{x}_{1} \mid 1\right) \\
& \alpha_{1}(2)=P(2) P_{x}\left(\mathbf{x}_{1} \mid 2\right)
\end{aligned}
$$

$\alpha_{2}(1)=P\left(x_{1}, x_{2}, s_{2}=1\right)$
$\alpha_{2}(2)=P\left(x_{1}, x_{2}, s_{2}=2\right)$

$$
\alpha_{2}(1)=\left[\alpha_{1}(1) P_{1}(1 \mid 1)+\alpha_{1}(2) P_{1}(1 \mid 2)\right] P_{x}\left(\mathbf{x}_{2} \mid 1\right)
$$

$\alpha_{2}(1)=P\left(x_{1}, x_{2}, s_{2}=1\right)$
$\alpha_{2}(2)=P\left(x_{1}, x_{2}, s_{2}=2\right)$

$$
\begin{aligned}
& \alpha_{2}(1)=\left[\alpha_{1}(1) P_{1}(1 \mid 1)+\alpha_{1}(2) P_{1}(1 \mid 2)\right] P_{x}\left(\mathbf{x}_{2} \mid 1\right) \\
& \alpha_{2}(2)=\left[\alpha_{1}(1) P_{1}(2 \mid 1)+\alpha_{1}(2) P_{1}(2 \mid 2)\right] P_{x}\left(\mathbf{x}_{2} \mid 2\right)
\end{aligned}
$$

Forward probabilities

- We get the following recursive equation for calculating the forward probabilities $\alpha_{t}(i)=P\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{t}, s_{t}=i\right)$:

$$
\begin{aligned}
\alpha_{1}(i) & =P(i) P_{x}\left(\mathbf{x}_{1} \mid i\right) \\
\alpha_{t}(i) & =\left[\sum_{j} \alpha_{t-1}(j) P_{1}(i \mid j)\right] P_{x}\left(\mathbf{x}_{t} \mid i\right)
\end{aligned}
$$

Backward probabilities

- We can proceed analogously to derive a recursive equation for the backward probabilities $\beta_{t}(i)=P\left(\mathbf{x}_{t+1}, \ldots, \mathbf{x}_{n} \mid s_{t}=i\right)$:

$$
\begin{aligned}
\beta_{n}(i) & =1 \\
\beta_{t}(i) & =\left[\sum_{j} P_{1}(j \mid i) P_{x}\left(\mathbf{x}_{t+1} \mid j\right) \beta_{t+1}(j)\right]
\end{aligned}
$$

Uses of forward/backward probabilities

- The complementary forward/backward probabilities

$$
\begin{aligned}
\alpha_{t}(i) & =P\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{t}, s_{t}=i\right) \\
\beta_{t}(i) & =P\left(\mathbf{x}_{t+1}, \ldots, \mathbf{x}_{n} \mid s_{t}=i\right)
\end{aligned}
$$

permit us to evaluate various probabilities:

1. $P\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right)$
2. $\gamma_{t}(i)=P\left(s_{t}=i \mid \mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)$
3. $\xi_{t}(i, j)=P\left(s_{t}=i, s_{t+1}=j \mid \mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)$

Uses of forward/backward probabilities

Probability of the observation sequence:

$$
\begin{aligned}
& P\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)=\sum_{i} P\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}, s_{t}=i\right) \\
& \quad=\sum_{i} P\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{t}, s_{t}=i\right) P\left(\mathbf{x}_{t+1}, \ldots, \mathbf{x}_{n} \mid s_{t}=i\right) \\
& \quad=\sum_{i} \alpha_{t}(i) \beta_{t}(i)
\end{aligned}
$$

Forward/backward probabilities cont'd

- We can evaluate the posterior probability that the HMM was in a particular state i at time t

$$
\begin{aligned}
P\left(s_{t}=i \mid \mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right) & =\frac{P\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}, s_{t}=i\right)}{P\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)} \\
& =\frac{\alpha_{t}(i) \beta_{t}(i)}{\sum_{j} \alpha_{t}(j) \beta_{t}(j)} \stackrel{\text { def }}{=} \gamma_{t}(i)
\end{aligned}
$$

Forward/backward probabilities cont'd

- We can also compute the posterior probability that the system was in state i at time t AND transitioned to state j at time $t+1$:

$P\left(s_{t}=i, s_{t+1}=j \mid \mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)$
fixed $i \rightarrow j$ transition, one observation
$=\frac{\alpha_{t}(i) \overbrace{P_{1}\left(s_{t+1}=j \mid s_{t}=i\right) P_{x}\left(\mathbf{x}_{t+1} \mid s_{t+1}=j\right)} \beta_{t+1}(j)}{\sum_{j} \alpha_{t}(j) \beta_{t}(j)}$
$\stackrel{\text { def }}{=} \xi_{t}(i, j)$,

