

The EM algorithm for HMMs

Assume we have L observation sequences $\mathbf{x}_1^{(l)},\ldots,\mathbf{x}_{n_l}^{(l)}$

 $\ensuremath{\textbf{E-step:}}$ compute the posterior probabilities

$$\gamma_t^{(l)}(i)$$
 for all l , i , and t $(t = 1, \dots, n_l)$

$$\xi_t^{(l)}(i,j)$$
 for all *l*, *i*, and *t* ($t = 1, ..., n_l - 1$)

M-step: First, the initial state distribution can be updated according to the expected fraction of times the sequences started from a specific state i

$$\hat{P}(i) \leftarrow \frac{1}{L} \sum_{l=1}^{L} \gamma_1^{(l)}(i)$$

M-step cont'd

Second, the transition probabilities can be updated on the basis of the posterior counts:

$$\hat{P}_1(j|i) \leftarrow \frac{\hat{n}(i,j)}{\sum_{j'} \hat{n}(i,j')}$$

where

$$\hat{n}(i,j) = \sum_{l=1}^{L} \sum_{t=1}^{n-1} \xi_t^{(l)}(i,j)$$

6

defines the expected number of transitions from i to j

5

11

Tommi Jaakkola, MIT CSAIL

