6.867 Machine learning: lecture 2

Tommi S. Jaakkola MIT CSAIL
tommi@csail.mit.edu

Topics

- The learning problem
- hypothesis class, estimation algorithm
- loss and estimation criterion
- sampling, empirical and expected losses
- Regression, example
- Linear regression
- estimation, errors, analysis

Review: the learning problem

- Recall the image (face) recognition problem

- Hypothesis class: we consider some restricted set \mathcal{F} of mappings $f: \mathcal{X} \rightarrow \mathcal{L}$ from images to labels
- Estimation: on the basis of a training set of examples and labels, $\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right)\right\}$, we find an estimate $\hat{f} \in \mathcal{F}$
- Evaluation: we measure how well \hat{f} generalizes to yet unseen examples, i.e., whether $\hat{f}\left(\mathbf{x}_{\text {new }}\right)$ agrees with $y_{\text {new }}$

Hypotheses and estimation

- We used a simple linear classifier, a parameterized mapping $f(\mathbf{x} ; \theta)$ from images \mathcal{X} to labels \mathcal{L}, to solve a binary image classification problem (2's vs 3's):

$$
\hat{y}=f(\mathbf{x} ; \theta)=\operatorname{sign}(\theta \cdot \mathbf{x})
$$

where \mathbf{x} is a pixel image and $\hat{y} \in\{-1,1\}$.

Hypotheses and estimation

- We used a simple linear classifier, a parameterized mapping $f(\mathbf{x} ; \theta)$ from images \mathcal{X} to labels \mathcal{L}, to solve a binary image classification problem (2's vs 3's):

$$
\hat{y}=f(\mathbf{x} ; \theta)=\operatorname{sign}(\theta \cdot \mathbf{x})
$$

where \mathbf{x} is a pixel image and $\hat{y} \in\{-1,1\}$.

- The parameters θ were adjusted on the basis of the training examples and labels according to a simple mistake driven update rule (written here in a vector form)

$$
\theta \leftarrow \theta+y_{i} \mathbf{x}_{i}, \quad \text { whenever } \quad y_{i} \neq \operatorname{sign}\left(\theta \cdot \mathbf{x}_{i}\right)
$$

Hypotheses and estimation

- We used a simple linear classifier, a parameterized mapping $f(\mathbf{x} ; \theta)$ from images \mathcal{X} to labels \mathcal{L}, to solve a binary image classification problem (2's vs 3's):

$$
\hat{y}=f(\mathbf{x} ; \theta)=\operatorname{sign}(\theta \cdot \mathbf{x})
$$

where \mathbf{x} is a pixel image and $\hat{y} \in\{-1,1\}$.

- The parameters θ were adjusted on the basis of the training examples and labels according to a simple mistake driven update rule (written here in a vector form)

$$
\theta \leftarrow \theta+y_{i} \mathbf{x}_{i}, \quad \text { whenever } \quad y_{i} \neq \operatorname{sign}\left(\theta \cdot \mathbf{x}_{i}\right)
$$

- The update rule attempts to minimize the number of errors that the classifier makes on the training examples

Estimation criterion

- We can formulate the estimation problem more explicitly by defining a zero-one loss:

$$
\operatorname{Loss}(y, \hat{y})=\left\{\begin{array}{l}
0, y=\hat{y} \\
1, y \neq \hat{y}
\end{array}\right.
$$

so that

$$
\frac{1}{n} \sum_{i=1}^{n} \operatorname{Loss}\left(y_{i}, \hat{y}_{i}\right)=\frac{1}{n} \sum_{i=1}^{n} \operatorname{Loss}\left(y_{i}, f\left(\mathbf{x}_{i} ; \theta\right)\right)
$$

gives the fraction of prediction errors on the training set.

- This is a function of the parameters θ and we can try to minimize it directly.

Estimation criterion cont'd

- We have reduced the estimation problem to a minimization problem

Estimation criterion cont'd

- We have reduced the estimation problem to a minimization problem

$$
\text { find } \theta \text { that minimizes } \overbrace{\frac{1}{n} \sum_{i=1}^{n} \operatorname{Loss}\left(y_{i}, f\left(\mathbf{x}_{i} ; \theta\right)\right)}^{\text {empirical loss }}
$$

- valid for any parameterized class of mappings from examples to predictions
- valid when the predictions are discrete labels, real valued, or other provided that the loss is defined appropriately
- may be ill-posed (under-constrained) as stated

Estimation criterion cont'd

- We have reduced the estimation problem to a minimization problem

$$
\text { find } \theta \text { that minimizes } \overbrace{\frac{1}{n} \sum_{i=1}^{n} \operatorname{Loss}\left(y_{i}, f\left(\mathbf{x}_{i} ; \theta\right)\right)}^{\text {empirical loss }}
$$

- valid for any parameterized class of mappings from examples to predictions
- valid when the predictions are discrete labels, real valued, or other provided that the loss is defined appropriately
- may be ill-posed (under-constrained) as stated
- But why is it sensible to minimize the empirical loss in the first place since we are only interested in the performance on new examples?

Training and test performance: sampling

- We assume that each training and test example-label pair, (\mathbf{x}, y), is drawn independently at random from the same but unknown population of examples and labels.
- We can represent this population as a joint probability distribution $P(\mathbf{x}, y)$ so that each training/test example is a sample from this distribution $\left(\mathbf{x}_{i}, y_{i}\right) \sim P$

Training and test performance: sampling

- We assume that each training and test example-label pair, (\mathbf{x}, y), is drawn independently at random from the same but unknown population of examples and labels.
- We can represent this population as a joint probability distribution $P(\mathbf{x}, y)$ so that each training/test example is a sample from this distribution $\left(\mathbf{x}_{i}, y_{i}\right) \sim P$

$$
\begin{aligned}
\text { Empirical (training) loss } & =\frac{1}{n} \sum_{i=1}^{n} \operatorname{Loss}\left(y_{i}, f\left(\mathbf{x}_{i} ; \theta\right)\right) \\
\text { Expected (test) loss } & =E_{(\mathbf{x}, y) \sim P}\{\operatorname{Loss}(y, f(\mathbf{x} ; \theta))\}
\end{aligned}
$$

- The training loss based on a few sampled examples and labels serves as a proxy for the test performance measured over the whole population.

Topics

- The learning problem
- hypothesis class, estimation algorithm
- loss and estimation criterion
- sampling, empirical and expected losses
- Regression, example
- Linear regression
- estimation, errors, analysis

Regression

- The goal is to make quantitative (real valued) predictions on the basis of a (vector of) features or attributes
- Example: predicting vehicle fuel efficiency (mpg) from 8 attributes

y		\mathbf{x}			
	cyls	disp	hp	weight	\ldots
18.0	8	307.0	130.00	3504	\ldots
26.0	4	97.00	46.00	1835	\ldots
33.5	4	98.00	83.00	2075	\ldots
\ldots					

Regression

- The goal is to make quantitative (real valued) predictions on the basis of a (vector of) features or attributes
- Example: predicting vehicle fuel efficiency (mpg) from 8 attributes

y		x			
	cyls	disp	hp	weight	\ldots
18.0	8	307.0	130.00	3504	\ldots
26.0	4	97.00	46.00	1835	\ldots
33.5	4	98.00	83.00	2075	\ldots
\ldots					

- We need to
- specify the class of functions (e.g., linear)
- select how to measure prediction loss
- solve the resulting minimization problem

Linear regression

- We begin by considering linear regression (easy to extend to more complex predictions later on)

$$
\begin{array}{rl}
f: \mathcal{R} \rightarrow \mathcal{R} & \\
f(x ; \mathbf{w})=w_{0}+w_{1} x \\
f: \mathcal{R}^{d} \rightarrow \mathcal{R} & f(\mathbf{x} ; \mathbf{w})=w_{0}+w_{1} x_{1}+\ldots w_{d} x_{d}
\end{array}
$$

where $\mathbf{w}=\left[w_{0}, w_{1}, \ldots, w_{d}\right]^{T}$ are parameters we need to set.

Linear regression: squared loss

$$
\begin{aligned}
& f: \mathcal{R} \rightarrow \mathcal{R} \quad f(x ; \mathbf{w})=w_{0}+w_{1} x \\
& f: \mathcal{R}^{d} \rightarrow \mathcal{R} \quad f(\mathbf{x} ; \mathbf{w})=w_{0}+w_{1} x_{1}+\ldots w_{d} x_{d}
\end{aligned}
$$

- We can measure the prediction loss in terms of squared error, $\operatorname{Loss}(y, \hat{y})=(y-\hat{y})^{2}$, so that the empirical loss on n training samples becomes mean squared error

$$
J_{n}(\mathbf{w})=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f\left(\mathbf{x}_{i} ; \mathbf{w}\right)\right)^{2}
$$

Linear regression: estimation

- We have to minimize the empirical squared loss

$$
\begin{align*}
J_{n}(\mathbf{w}) & =\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f\left(\mathbf{x}_{i} ; \mathbf{w}\right)\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-w_{0}-w_{1} x_{i}\right)^{2} \tag{1-dim}
\end{align*}
$$

By setting the derivatives with respect to w_{1} and w_{0} to zero, we get necessary conditions for the "optimal" parameter values

$$
\begin{aligned}
\frac{\partial}{\partial w_{1}} J_{n}(\mathbf{w}) & =0 \\
\frac{\partial}{\partial w_{0}} J_{n}(\mathbf{w}) & =0
\end{aligned}
$$

Optimality conditions: derivation

$$
\frac{\partial}{\partial w_{1}} J_{n}(\mathbf{w})=\frac{\partial}{\partial w_{1}} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-w_{0}-w_{1} x_{i}\right)^{2}
$$

$$
\begin{aligned}
& \text { Optimality conditions: derivation } \\
& \begin{aligned}
\frac{\partial}{\partial w_{1}} J_{n}(\mathbf{w}) & =\frac{\partial}{\partial w_{1}} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-w_{0}-w_{1} x_{i}\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n} \frac{\partial}{\partial w_{1}}\left(y_{i}-w_{0}-w_{1} x_{i}\right)^{2}
\end{aligned}
\end{aligned}
$$

Optimality conditions: derivation

$$
\begin{aligned}
\frac{\partial}{\partial w_{1}} J_{n}(\mathbf{w}) & =\frac{\partial}{\partial w_{1}} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-w_{0}-w_{1} x_{i}\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n} \frac{\partial}{\partial w_{1}}\left(y_{i}-w_{0}-w_{1} x_{i}\right)^{2} \\
& =\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-w_{0}-w_{1} x_{i}\right) \frac{\partial}{\partial w_{1}}\left(y_{i}-w_{0}-w_{1} x_{i}\right)
\end{aligned}
$$

Optimality conditions: derivation

$$
\begin{aligned}
\frac{\partial}{\partial w_{1}} J_{n}(\mathbf{w}) & =\frac{\partial}{\partial w_{1}} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-w_{0}-w_{1} x_{i}\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n} \frac{\partial}{\partial w_{1}}\left(y_{i}-w_{0}-w_{1} x_{i}\right)^{2} \\
& =\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-w_{0}-w_{1} x_{i}\right) \frac{\partial}{\partial w_{1}}\left(y_{i}-w_{0}-w_{1} x_{i}\right) \\
& =\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-w_{0}-w_{1} x_{i}\right)\left(-x_{i}\right)=0
\end{aligned}
$$

Optimality conditions: derivation

$$
\begin{aligned}
\frac{\partial}{\partial w_{1}} J_{n}(\mathbf{w}) & =\frac{\partial}{\partial w_{1}} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-w_{0}-w_{1} x_{i}\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n} \frac{\partial}{\partial w_{1}}\left(y_{i}-w_{0}-w_{1} x_{i}\right)^{2} \\
& =\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-w_{0}-w_{1} x_{i}\right) \frac{\partial}{\partial w_{1}}\left(y_{i}-w_{0}-w_{1} x_{i}\right) \\
& =\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-w_{0}-w_{1} x_{i}\right)\left(-x_{i}\right)=0 \\
\frac{\partial}{\partial w_{0}} J_{n}(\mathbf{w}) & =\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-w_{0}-w_{1} x_{i}\right)(-1)=0
\end{aligned}
$$

Interpretation

- If we denote the prediction error as $\epsilon_{i}=\left(y_{i}-w_{0}-w_{1} x_{i}\right)$ then the optimality conditions can be written as

$$
\frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} x_{i}=0, \quad \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i}=0
$$

Thus the prediction error is uncorrelated with any linear function of the inputs

Interpretation

- If we denote the prediction error as $\epsilon_{i}=\left(y_{i}-w_{0}-w_{1} x_{i}\right)$ then the optimality conditions can be written as

$$
\frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} x_{i}=0, \quad \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i}=0
$$

Thus the prediction error is uncorrelated with any linear function of the inputs
but not with a quadratic function of the inputs

$$
\frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} x_{i}^{2} \neq 0 \quad \text { (in general) }
$$

Linear regression: matrix notation

- We can express the solution a bit more generally by resorting to a matrix notation

$$
\mathbf{y}=\left[\begin{array}{l}
y_{1} \\
\cdots \\
y_{n}
\end{array}\right], \mathbf{X}=\left[\begin{array}{cc}
1 & x_{1} \\
\cdots & \cdots \\
1 & x_{n}
\end{array}\right], \mathbf{w}=\left[\begin{array}{l}
w_{0} \\
w_{1}
\end{array}\right]
$$

so that

$$
\begin{aligned}
\frac{1}{n} \sum_{t=1}^{n}\left(y_{t}-w_{0}-w_{1} x_{t}\right)^{2} & =\frac{1}{n}\left\|\left[\begin{array}{l}
y_{1} \\
\cdots \\
y_{n}
\end{array}\right]-\left[\begin{array}{cc}
1 & x_{1} \\
\cdots & \cdots \\
1 & x_{n}
\end{array}\right]\left[\begin{array}{l}
w_{0} \\
w_{1}
\end{array}\right]\right\|^{2} \\
& =\frac{1}{n}\|\mathbf{y}-\mathbf{X} \mathbf{w}\|^{2}
\end{aligned}
$$

Linear regression: solution

By setting the derivatives of $\|\mathbf{y}-\mathbf{X w}\|^{2} / n$ to zero, we get the same optimality conditions as before, now expressed in a matrix form

$$
\frac{\partial}{\partial \mathbf{w}} \frac{1}{n}\|\mathbf{y}-\mathbf{X} \mathbf{w}\|^{2}=\frac{\partial}{\partial \mathbf{w}} \frac{1}{n}(\mathbf{y}-\mathbf{X} \mathbf{w})^{T}(\mathbf{y}-\mathbf{X} \mathbf{w})
$$

Linear regression: solution

By setting the derivatives of $\|\mathbf{y}-\mathbf{X w}\|^{2} / n$ to zero, we get the same optimality conditions as before, now expressed in a matrix form

$$
\begin{aligned}
\frac{\partial}{\partial \mathbf{w}} \frac{1}{n}\|\mathbf{y}-\mathbf{X} \mathbf{w}\|^{2} & =\frac{\partial}{\partial \mathbf{w}} \frac{1}{n}(\mathbf{y}-\mathbf{X} \mathbf{w})^{T}(\mathbf{y}-\mathbf{X} \mathbf{w}) \\
& =\frac{2}{n} \mathbf{X}^{T}(\mathbf{y}-\mathbf{X} \mathbf{w})
\end{aligned}
$$

Linear regression: solution

By setting the derivatives of $\|\mathbf{y}-\mathbf{X w}\|^{2} / n$ to zero, we get the same optimality conditions as before, now expressed in a matrix form

$$
\begin{aligned}
\frac{\partial}{\partial \mathbf{w}} \frac{1}{n}\|\mathbf{y}-\mathbf{X} \mathbf{w}\|^{2} & =\frac{\partial}{\partial \mathbf{w}} \frac{1}{n}(\mathbf{y}-\mathbf{X} \mathbf{w})^{T}(\mathbf{y}-\mathbf{X} \mathbf{w}) \\
& =\frac{2}{n} \mathbf{X}^{T}(\mathbf{y}-\mathbf{X} \mathbf{w}) \\
& =\frac{2}{n}\left(\mathbf{X}^{T} \mathbf{y}-\mathbf{X}^{T} \mathbf{X} \mathbf{w}\right)=\mathbf{0}
\end{aligned}
$$

which gives

$$
\hat{\mathbf{w}}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}
$$

- The solution is a linear function of the outputs y

Linear regression: generalization

- As the number of training examples increases our solution gets "better"

We'd like to understand the error a bit better

Linear regression: types of errors

- Structural error measures the error introduced by the limited function class (infinite training data):
$\min _{w_{1}, w_{0}} E_{(x, y) \sim P}\left(y-w_{0}-w_{1} x\right)^{2}=E_{(x, y) \sim P}\left(y-w_{0}^{*}-w_{1}^{*} x\right)^{2}$
where $\left(w_{0}^{*}, w_{1}^{*}\right)$ are the optimal linear regression parameters.

Linear regression: types of errors

- Structural error measures the error introduced by the limited function class (infinite training data):
$\min _{w_{1}, w_{0}} E_{(x, y) \sim P}\left(y-w_{0}-w_{1} x\right)^{2}=E_{(x, y) \sim P}\left(y-w_{0}^{*}-w_{1}^{*} x\right)^{2}$
where $\left(w_{0}^{*}, w_{1}^{*}\right)$ are the optimal linear regression parameters.
- Approximation error measures how close we can get to the optimal linear predictions with limited training data:

$$
E_{(x, y) \sim P}\left(w_{0}^{*}+w_{1}^{*} x-\hat{w}_{0}-\hat{w}_{1} x\right)^{2}
$$

where $\left(\hat{w}_{0}, \hat{w}_{1}\right)$ are the parameter estimates based on a small training set (therefore themselves random variables).

Linear regression: error decomposition

- The expected error of our linear regression function decomposes into the sum of structural and approximation errors

$$
\begin{aligned}
& E_{(x, y) \sim P}\left(y-\hat{w}_{0}-\hat{w}_{1} x\right)^{2}= \\
& \quad E_{(x, y) \sim P}\left(y-w_{0}^{*}-w_{1}^{*} x\right)^{2}+ \\
& \quad E_{(x, y) \sim P}\left(w_{0}^{*}+w_{1}^{*} x-\hat{w}_{0}-\hat{w}_{1} x\right)^{2}
\end{aligned}
$$

Error decomposition: derivation

$$
\begin{aligned}
& E_{(x, y) \sim P}\left(y-\hat{w}_{0}-\hat{w}_{1} x\right)^{2} \\
&= E_{(x, y) \sim P}\left(\left(y-w_{0}^{*}-w_{1}^{*} x\right)+\left(w_{0}^{*}+w_{1}^{*} x-\hat{w}_{0}-\hat{w}_{1} x\right)\right)^{2} \\
&= E_{(x, y) \sim P}\left(y-w_{0}^{*}-w_{1}^{*} x\right)^{2} \\
&+E_{(x, y) \sim P} 2\left(y-w_{0}^{*}-w_{1}^{*} x\right)\left(w_{0}^{*}+w_{1}^{*} x-\hat{w}_{0}-\hat{w}_{1} x\right) \\
& \quad+E_{(x, y) \sim P}\left(w_{0}^{*}+w_{1}^{*} x-\hat{w}_{0}-\hat{w}_{1} x\right)^{2}
\end{aligned}
$$

The second term has to be zero since the error $\left(y-w_{0}^{*}-w_{1}^{*} x\right)$ of the best linear predictor is necessarily uncorrelated with any linear function of the input including $\left(w_{0}^{*}+w_{1}^{*} x-\hat{w}_{0}-\hat{w}_{1} x\right)$

