

Machine learning: lecture 20

Tommi S. Jaakkola MIT CSAIL tommi@csail.mit.edu

Topics

- Representation and graphical models
 - examples
- Bayesian networks
 - examples, specification
- graphs and independence
- associated distribution

Tommi Jaakkola, MIT CSAIL

2

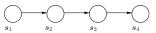
What is a good representation?

- Properties of good representations
- 1. Explicit
- 2. Modular
- 3. Permits efficient computation
- 4. etc

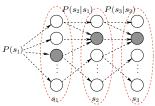
Tommi Jaakkola, MIT CSAIL

Representation: explicit

• Representation in terms of variables and dependencies (a graphical model):



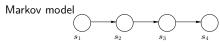
Representation in terms of state transitions (transition diagram)

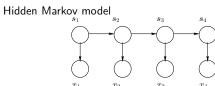


Tommi Jaakkola, MIT CSAIL 4

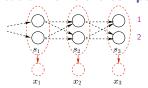
Representation: modular

• We can easily add/remove components of the model





Representation: efficient computation



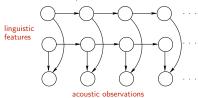
- Posterior marginals (forward-backward)
- Max-probabilities (viterbi)

Tommi Jaakkola, MIT CSAIL

Tommi Jaakkola, MIT CSAIL

Graphical models: examples

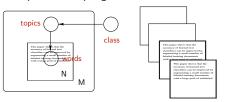
 Factorial Hidden Markov model as a Bayesian network (directed graphical model)



Tommi Jaakkola, MIT CSAIL

Graphical models: examples

• Plates and repeated sampling

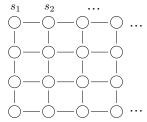


- each document has N words, sampled from a distribution that depends on the choice of topics
- the topics for each document are sampled from a class conditional distribution

Tommi Jaakkola, MIT CSAIL

Graphical models: examples

• Lattice models (e.g., Ising model) as a Markov random field

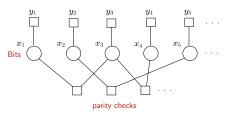


 symmetric interactions (e.g., alignment of two nearby spins is energetically favorable)

Tommi Jaakkola, MIT CSAIL

Graphical models: examples

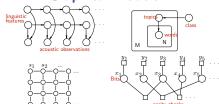
• Factor graphs and codes (information theory)



 circles denote variables while the squares are factors (functions) that constrain the values of the variables

Tommi Jaakkola, MIT CSAIL 10

Graphical models



• Graph semantics:

Tommi Jaakkola, MIT CSAIL

 $\mathsf{graph} \Rightarrow \mathsf{separation} \ \mathsf{properties} \Rightarrow \mathsf{independence}$

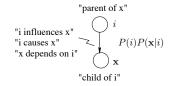
- Association with probability distributions: independence ⇒ family of distributions
- Inference and estimation:
 graph structure ⇒ efficient computation

CSAIL

Bayesian networks

 Bayesian networks are directed acyclic graphs, where the nodes represent variables and directed edges capture dependencies

A mixture model as a Bayesian network



12

11 Tommi Jaakkola, MIT CSAIL

Bayesian networks

 Bayesian networks are directed acyclic graphs, where the nodes represent variables and directed edges capture dependencies

• Graph semantics:

graph \Rightarrow separation properties \Rightarrow independence

Association with probability distributions:
 independence ⇒ family of distributions

Tommi Jaakkola, MIT CSAIL

Example

• A simple Bayesian network: coin tosses

Tommi Jaakkola, MIT CSAIL

Example

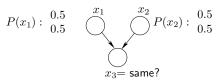
• A simple Bayesian network: coin tosses

 $P(x_1): \begin{array}{ccc} 0.5 & x_1 & x_2 \\ 0.5 & & \end{array}$

13

Example

• A simple Bayesian network: coin tosses



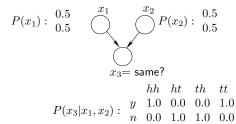
Tommi Jaakkola, MIT CSAIL

15

Tommi Jaakkola, MIT CSAIL 16

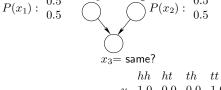
Example

• A simple Bayesian network: coin tosses



Example

• A simple Bayesian network: coin tosses



- Two levels of description
- 1. graph structure (dependencies, independencies)
- 2. associated probability distribution

Example cont'd

• What can the graph alone tell us?

Example cont'd

• What can the graph alone tell us?

ullet x_1 and x_2 are marginally independent

Tommi Jaakkola, MIT CSAIL

19

Tommi Jaakkola, MIT CSAIL

20

Example cont'd

• What can the graph alone tell us?

ullet x_1 and x_2 are marginally independent

• x_1 and x_2 become *dependent* if we know x_3 (the dependence concerns our beliefs about the outcomes)

Tommi Jaakkola, MIT CSAIL

21

Traffic example

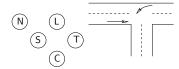
N = X is nice?

 $\mathsf{L} = \mathsf{traffic} \; \mathsf{light}$

S = X decides to stop?

T =the other car turns left?

C = crash?



Tommi Jaakkola, MIT CSAIL

22

Traffic example

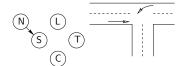
N = X is nice?

L = traffic light

S = X decides to stop?

 $\mathsf{T} = \mathsf{the} \ \mathsf{other} \ \mathsf{car} \ \mathsf{turns} \ \mathsf{left} ?$

C = crash?



Traffic example

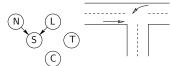
N = X is nice?

L = traffic light

S = X decides to stop?

T =the other car turns left?

C = crash?



Tommi Jaakkola, MIT CSAIL

23

Tommi Jaakkola, MIT CSAIL

Traffic example

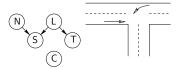
N = X is nice?

L = traffic light

S = X decides to stop?

T = the other car turns left?

C = crash?



Tommi Jaakkola, MIT CSAIL

Traffic example

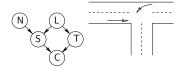
N = X is nice?

L = traffic light

S = X decides to stop?

T =the other car turns left?

C = crash?



Tommi Jaakkola, MIT CSAIL

26

Traffic example

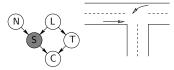
N = X is nice?

L = traffic light

S = X decides to stop?

T =the other car turns left?

C = crash?



 If we only know that X decided to stop, can X's character (variable N) tell us anything about the other car turning (variable T)?

Tommi Jaakkola, MIT CSAIL

27

29

25

Graph, independence, d-separation

ullet Are N and T independent given S?

Tommi Jaakkola, MIT CSAIL

28

CSAIL

Graph, independence, d-separation

ullet Are N and T independent given S?

Definition: Variables N and T are D-separated given S if S separates them in the moralized ancestral graph

Graph, independence, d-separation

ullet Are N and T independent given S?

 $\begin{tabular}{ll} \textbf{Definition:} & {\sf Variables} \ N \ \mbox{and} \ T \ \mbox{are D-separated given} \ S \ \mbox{if} \\ S \ \mbox{separates them in the moralized ancestral graph} \\ \end{tabular}$

original

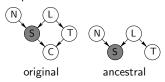
Tommi Jaakkola, MIT CSAIL

Tommi Jaakkola, MIT CSAIL

Graph, independence, d-separation

• Are N and T independent given S?

Definition: Variables N and T are D-separated given S if S separates them in the moralized ancestral graph

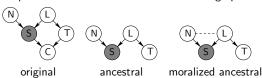


Tommi Jaakkola, MIT CSAIL

Graph, independence, d-separation

• Are N and T independent given S?

Definition: Variables N and T are D-separated given S if S separates them in the moralized ancestral graph

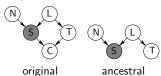


Tommi Jaakkola, MIT CSAIL 32

Graph, independence, d-separation

ullet Are N and T independent given S?

 $\begin{tabular}{ll} \textbf{Definition:} & \begin{tabular}{ll} Variables N and T are D-separated given S if S separates them in the moralized ancestral graph S and S are the moralized constant of the moralized constan$



N_L S T

moralized ancestral

Tommi Jaakkola, MIT CSAIL

Tommi Jaakkola, MIT CSAIL

33

31

Graphs and distributions

 A graph is a compact representation of a large collection of independence properties

Tommi Jaakkola, MIT CSAIL 34

Graphs and distributions

 A graph is a compact representation of a large collection of independence properties

Theorem: Any probability distribution that is consistent with a directed graph G has to factor according to "node given parents":

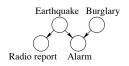
$$P(\mathbf{x}|G) = \prod_{i=1}^{d} P(x_i|\mathbf{x}_{pa_i})$$

where \mathbf{x}_{pa_i} are the *parents* of x_i and d is the number of nodes (variables) in the graph.

CSAIL

Explaining away phenomenon

Model



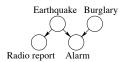
nodes (variables) in the graph.

Tommi Jaakkola, MIT CSAIL

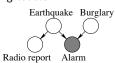
35

Explaining away phenomenon

Model



• Evidence, competing causes

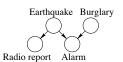


37

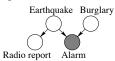
Explaining away phenomenon

Model

Tommi Jaakkola, MIT CSAIL



• Evidence, competing causes



. . . .

Radio report Alarm

Additional evidence and explaining away
 Earthquake Burglary

Tommi Jaakkola, MIT CSAIL