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Topics
• Representation and graphical models

– examples

• Bayesian networks

– examples, specification

– graphs and independence

– associated distribution
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What is a good representation?
• Properties of good representations

1. Explicit

2. Modular

3. Permits efficient computation

4. etc.

Tommi Jaakkola, MIT CSAIL 3



Representation: explicit
• Representation in terms of variables and dependencies (a

graphical model):

s1 s3 s4s2

• Representation in terms of state transitions (transition

diagram)

. .
 .

. .
 .

. .
 .

P (s3|s2)

s1 s2 s3

P (s1)

P (s2|s1)
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Representation: modular
• We can easily add/remove components of the model

Markov model

s1 s3 s4s2

Hidden Markov model
s4s2s1

x3 x4x2x1

s3
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Representation: efficient computation

s3s1

2

1

x3x1 x2

s2

• Posterior marginals (forward-backward)

• Max-probabilities (viterbi)
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Graphical models: examples
• Factorial Hidden Markov model as a Bayesian network

(directed graphical model)

. . .

acoustic observations

features
linguistic

. . .

. . .
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Graphical models: examples
• Plates and repeated sampling

This paper shows that the
accuracy of learned text

augmenting a small number of
labeled training documents
with a large pool of unlabeled

classifiers can be improved by
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This paper shows that the
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augmenting a small number of
labeled training documents
with a large pool of unlabeled

classifiers can be improved by

This paper shows that the
accuracy of learned text

augmenting a small number of
labeled training documents
with a large pool of unlabeled

classifiers can be improved by

M

topics

words

class

N

– each document has N words, sampled from a distribution

that depends on the choice of topics

– the topics for each document are sampled from a class

conditional distribution
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Graphical models: examples
• Lattice models (e.g., Ising model) as a Markov random field

...s1 s2

...

...

– symmetric interactions (e.g., alignment of two nearby spins

is energetically favorable)
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Graphical models: examples
• Factor graphs and codes (information theory)

Bits

y4y3y2y1 y5

x4 x5x2x1 x3
. . .

. . .

. . .

parity checks

– circles denote variables while the squares are factors

(functions) that constrain the values of the variables
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Graphical models

. . .

acoustic observations

features
linguistic

. . .

. . . class

NM

topics

words

...s1 s2

...

...
Bits

y4y3y2y1 y5

x4 x5x2x1 x3 . . .

. . .

. . .

parity checks

• Graph semantics:

graph ⇒ separation properties ⇒ independence

• Association with probability distributions:

independence ⇒ family of distributions

• Inference and estimation:

graph structure ⇒ efficient computation
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Bayesian networks
• Bayesian networks are directed acyclic graphs, where

the nodes represent variables and directed edges capture

dependencies

A mixture model as

a Bayesian network

"i influences x"
"i causes x"
"x depends on i"

"parent of x"

"child of i"

P (i)P (x|i)

x

i
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Bayesian networks
• Bayesian networks are directed acyclic graphs, where

the nodes represent variables and directed edges capture

dependencies

A mixture model as

a Bayesian network

"i influences x"
"i causes x"
"x depends on i"

"parent of x"

"child of i"

P (i)P (x|i)

x

i

• Graph semantics:

graph ⇒ separation properties ⇒ independence

• Association with probability distributions:

independence ⇒ family of distributions
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Example
• A simple Bayesian network: coin tosses

x1 x2
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Example
• A simple Bayesian network: coin tosses

x1 x2

P (x2) :
0.5
0.5P (x1) :

0.5
0.5

Tommi Jaakkola, MIT CSAIL 15



Example
• A simple Bayesian network: coin tosses

P (x1) :
0.5
0.5

x3= same?

x1 x2

P (x2) :
0.5
0.5
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Example
• A simple Bayesian network: coin tosses

P (x3|x1, x2) :

hh ht th tt
y 1.0 0.0 0.0 1.0
n 0.0 1.0 1.0 0.0

x3= same?

x1 x2

P (x2) :
0.5
0.5P (x1) :

0.5
0.5
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Example
• A simple Bayesian network: coin tosses

P (x3|x1, x2) :

hh ht th tt
y 1.0 0.0 0.0 1.0
n 0.0 1.0 1.0 0.0

x3= same?

x1 x2

P (x2) :
0.5
0.5P (x1) :

0.5
0.5

• Two levels of description

1. graph structure (dependencies, independencies)

2. associated probability distribution
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Example cont’d
• What can the graph alone tell us?

x2

x3= same?

x1

Tommi Jaakkola, MIT CSAIL 19



Example cont’d
• What can the graph alone tell us?

x2

x3= same?

x1

• x1 and x2 are marginally independent
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Example cont’d
• What can the graph alone tell us?

x2

x3= same?

x1

• x1 and x2 are marginally independent
x2

x3= same?

x1

• x1 and x2 become dependent if we know x3

(the dependence concerns our beliefs about the outcomes)
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Traffic example

N = X is nice?

L = traffic light

S = X decides to stop?

T = the other car turns left?

C = crash?

N

T

C

S

L
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Traffic example

N = X is nice?

L = traffic light

S = X decides to stop?

T = the other car turns left?

C = crash?

N

T

C

S

L

• If we only know that X decided to stop, can X’s character

(variable N) tell us anything about the other car turning

(variable T)?
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Graph, independence, d-separation
• Are N and T independent given S?

N

T

C

S

L
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Graph, independence, d-separation
• Are N and T independent given S?

N

T

C

S

L

Definition: Variables N and T are D-separated given S if

S separates them in the moralized ancestral graph
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Graph, independence, d-separation
• Are N and T independent given S?

N

T

C

S

L

Definition: Variables N and T are D-separated given S if

S separates them in the moralized ancestral graph

N

T

C

S

L

original
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Graph, independence, d-separation
• Are N and T independent given S?

N

T

C

S

L

Definition: Variables N and T are D-separated given S if

S separates them in the moralized ancestral graph

N

T

C

S

L

N

TS

L

original ancestral
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Graph, independence, d-separation
• Are N and T independent given S?

N

T

C

S

L

Definition: Variables N and T are D-separated given S if

S separates them in the moralized ancestral graph

N

T

C

S

L

N

TS

L N

TS

L

original ancestral moralized ancestral
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Graph, independence, d-separation
• Are N and T independent given S?

N

T

C

S

L

Definition: Variables N and T are D-separated given S if

S separates them in the moralized ancestral graph

N

T

C

S

L

N

TS

L N

TS

L

original ancestral moralized ancestral
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Graphs and distributions

N

T

C

S

L

• A graph is a compact representation of a large collection of

independence properties
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Graphs and distributions

N

T

C

S

L

• A graph is a compact representation of a large collection of

independence properties

Theorem: Any probability distribution that is consistent

with a directed graph G has to factor according to “node

given parents”:

P (x|G) =
d∏

i=1

P (xi|xpai
)

where xpai
are the parents of xi and d is the number of

nodes (variables) in the graph.
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Explaining away phenomenon
• Model

AlarmRadio report

Earthquake Burglary
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Explaining away phenomenon
• Model

AlarmRadio report

Earthquake Burglary

• Evidence, competing causes

AlarmRadio report

Earthquake Burglary
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Explaining away phenomenon
• Model

AlarmRadio report

Earthquake Burglary

• Evidence, competing causes

AlarmRadio report

Earthquake Burglary

• Additional evidence and explaining away

AlarmRadio report

Earthquake Burglary
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