Bayesian networks: review

- Graph \(\Rightarrow \) d-separation \(\Rightarrow \) independence

\[P(N) P(L) P(S|N,L) P(T|L) P(C|S,T) \]

(any distribution that factors in this manner is consistent with all the independence properties implied by the graph)

Graphs, probabilities, and consistency

- Suppose \(x_1, x_2, \) and \(x_3 \) represent three independent coin tosses so that the probability distribution can be written as a product \(P(x_1) P(x_2) P(x_3) \)

This distribution is consistent with all the following graphs in the sense that all the independence properties we can infer from the graphs also hold for this distribution:

Moreover, (1) and (2) are consistent with any distribution over \(x_1, x_2, \) and \(x_3 \)

Undirected graphical models

- For example: a simple lattice model with binary variables \(x_i \in \{1, 1\} \) (spins) and pairwise interactions (edges \(E \))

\[P(x_1, \ldots, x_n) = \frac{1}{Z} \prod_{(i,j) \in E} \exp(J_{ij} x_i x_j) \]

where \(J_{ij} \) specifies the "interaction strength" between nearby variables \(x_i \) and \(x_j \).
Undirected graphs: associated distribution

- The simple graph separation properties again impose independence on the associated distribution.

\[
P(x) = \frac{1}{Z} \prod_{C} \psi_c(x_c)
\]

where \(x_c\) denotes the variables in clique \(C\).

Theorem: (Hammersley-Clifford) Any distribution consistent with an undirected graph has to factor according to the (maximal) cliques in the graph.

\[P(x) = \frac{1}{Z} \prod_{c \in C} \psi_c(x_c)
\]

where \(x_c\) denotes the variables in clique \(c\).

Graph semantics: comparison

- Directed and undirected graphs are complementary.

The following two independence properties cannot be captured simultaneously with a Bayesian network:

![Directed graph showing independence properties](image)

Marginal but not conditional independence cannot be captured with an undirected graph:

![Undirected graph showing independence properties](image)

Graph transformations

- We can transform directed graphical models (Bayesian networks) into undirected graphical models simply via moralization.

\[P(x_1)P(x_2)P(x_3|x_1, x_2)P(x_4|x_3) \quad \quad [P(x_1)P(x_2)P(x_3|x_1, x_2)] \cdot [P(x_4|x_3)]
\]

(only the graph representation changes, not the distribution)

- The resulting undirected graph will be consistent with the distribution associated with the original directed graph.

Outline

- Bayesian networks cont’d
 - graphs and consistency
- Undirected graphical models (Markov random fields)
 - graphs, independence, consistency, associated distribution
 - Bayesian networks as undirected models
- Quantitative probabilistic inference
 - medical diagnosis example
 - basic algorithms and problems

Example setting: medical diagnosis

- The QMR-DT model (Shwe et al. 1991)

 ![Medical diagnosis example](image)

 - about 600 binary (0/1) disease variables representing diseases that are “present” or “absent”
 - about 4000 associated binary (0/1) findings; findings may be either “positive” or “negative”
Example cont’d
- The model is based on a number of simplifying assumptions

![Joint distribution diagram]

- Assumptions explicit in the graph:
 - relevant variables
 - marginal independence of diseases
 - conditional independence of findings
- Further assumptions about the probability distribution:
 - causal independence

Assumptions in detail
- We have to specify how \(n \) (potentially 100 or more) underlying diseases conspire to influence any finding

![Assumptions in detail diagram]

The size of the conditional probability table for \(P(f|d_1, d_2, d_3, \ldots) \) would increase exponentially with the number of associated diseases

\(\Rightarrow \) e.g., causal independence assumption

Causal independence: noisy-or
- We assume that each finding is negative if all the associated diseases (if present) independently fail to produce a positive outcome

\[
P(f_i = 0|d_{pa_i}) = \prod_{j \in pa_i} P(f_i = 0|d_j) = (1 - q_{i0}) \prod_{j \in pa_i} (1 - q_{ij})^{d_j}
\]

and \(P(f_i = 1|d_{pa_i}) = 1 - P(f_i = 0|d_{pa_i}) \).

Joint distribution
- After all these assumptions, we can write down the following joint distribution over \(n \) diseases and \(m \) findings

\[
P(f, d) = \prod_{i=1}^{m} P(f_i|d_{pa_i}) \prod_{j=1}^{n} P(d_j)
\]

where

\[
P(f_i = 0|d_{pa_i}) = (1 - q_{i0}) \prod_{j \in pa_i} (1 - q_{ij})^{d_j}
\]

The only adjustable parameters in this model are \(q_{ij} \) and \(P(d_j) \)

Three inference problems
- Given a set of observed findings \(f^* = \{ f_1^*, \ldots, f_k^* \} \), we wish to infer what the underlying diseases are

![Three inference problems diagram]

1. What are the marginal posterior probabilities over the diseases?
2. What is the most likely setting of all the underlying disease variables?
3. Which test should we carry out next in order to get the most information about the diseases?
Inference problem cont’d
• For the purposes of inferring the presence or absence of the underlying diseases, we can ignore any findings that remain unobserved (as if they were not in the model to begin with).

\[
\begin{align*}
\text{Inference: graph transformation} & \\
P(d_1) & \quad P(d_2) & \quad P(d_3) \\
d_1 & \quad d_2 & \quad d_3 \\
f_1 & \quad f_2 \\
P(f_1|d_1, d_2) & \quad P(f_2|d_2, d_3) \\
\end{align*}
\]

\[
\psi_{12}(d_1, d_2) = P(d_1)P(d_2)f_2^*(d_1, d_2)
\]

\[
\psi_{23}(d_2, d_3) = P(d_3)f_2^*(d_2, d_3)
\]

First inference problem: posterior marginals
• Given the observations we already have all the information, only implicitly.
• What messages (if any) do the disease variables have to share for them to be able to compute the posterior marginals locally?

\[
\begin{align*}
\psi_{12}(d_1, d_2) & = P(d_1)P(d_2)f_2^*(d_1, d_2) \\
\psi_{23}(d_2, d_3) & = P(d_3)f_2^*(d_2, d_3) \\
\end{align*}
\]

• Joint distribution as a product of “interaction potentials”
\[
P(d_1, d_2, d_3, \text{data}) = \psi_{12}(d_1, d_2) \cdot \psi_{23}(d_2, d_3)
\]
Inference: graph transformation
• We have transformed the Bayesian network into an
undirected graph model (Markov random field):

\[P(d_1, d_2, d_3, \text{data}) = \psi_{12}(d_1, d_2) \cdot \psi_{23}(d_2, d_3) \]

Marginalization
• It suffices to evaluate the following probabilities

\[P(d_1, \text{data}) = \sum_{d_2, d_3} P(d_1, d_2, d_3, \text{data}) \]
\[P(d_2, \text{data}) = \sum_{d_1, d_3} P(d_1, d_2, d_3, \text{data}) \]
\[P(d_3, \text{data}) = \sum_{d_1, d_2} P(d_1, d_2, d_3, \text{data}) \]

These will readily yield the posterior probabilities of interest:

\[P(d_1|\text{data}) = P(d_1, \text{data})/ \sum_{d_1'} P(d_1', \text{data}) \]