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Outline
• Bayesian networks cont’d

– graphs and consistency

• Undirected graphical models (Markov random fields)

– graphs, independence, consistency, associated distribution

– Bayesian networks as undirected models

• Quantitative probabilistic inference

– medical diagnosis example

– basic algorithms and problems
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Bayesian networks: review
• Graph ⇒ d-separation ⇒ independence
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– conditional independence properties provide the basis for

qualitative inferences

• Graph ⇒ associated probability distribution

P (N)P (L)P (S|N,L)P (T |L)P (C|S, T )

(any distribution that factors in this manner is consistent

with all the independence properties implied by the graph)
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Graphs, probabilities, and consistency
• Suppose x1, x2, and x3 represent three independent coin

tosses so that the probability distribution can be written as

a product P (x1)P (x2)P (x3)

This distribution is consistent with all the following graphs in

the sense that all the independence properties we can infer

from the graphs also hold for this distribution:

x3

(1) (2) (3) (4)
x1 x2

x3

(x1, x2, x3)

x1 x2

x3

x1 x2

Moreover, (1) and (2) are consistent with any distribution

over x1, x2, and x3
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Undirected graphical models
• For example: a simple lattice model with binary variables

xi ∈ {1, 1} (spins) and pairwise interactions (edges E)
x2x1

...

...
...

P (x1, . . . , xn) =
1
Z

∏
(i,j)∈E

exp(Jijxixj)

where Jij specifies the “interaction strength” between nearby

variables xi and xj.
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Undirected graphical models: graph semantics
• Graph semantics of undirected graphical models comes from

simple graph separation
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x1 and x4 are independent

given x2 and x3

x1 and x4 are not

independent given x3
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Graph semantics: comparison
• Directed and undirected graphs are complementary

The following two independence properties cannot be

captured simultaneously with a Bayesian network:

x4

x2

x3

x1

x4

x2

x3

x1

Marginal but not conditional independence cannot be

captured with an undirected graph:

x3

x1 x2
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Undirected graphs: associated distribution
• The simple graph separation properties again impose

independence (or Markov) properties on the associated

distribution
x1 x2

x3

x5

x4

x1 x2

x3

x5

x4

Theorem: (Hammersley-Clifford) Any distribution

consistent with an undirected graph has to factor according

to the (maximal) cliques in the graph

P (x) =
1
Z

∏
c∈C

ψc(xc)

where xc denotes the variables in clique c.
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Graph transformations
• We can transform directed graphical models (Bayesian

networks) into undirected graphical models simply via

moralization

[P (x1)P (x2)P (x3|x1, x2)] · [P (x4|x2)]

x4

x1 x2

x3 x4

x1 x2

x3

x1 x2

x3 x4

P (x1)P (x2)P (x3|x1, x2)P (x4|x2)

(only the graph representation changes, not the distribution)

• The resulting undirected graph will be consistent with the

distribution associated with the original directed graph
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Example setting: medical diagnosis
• The QMR-DT model (Shwe et al. 1991)

f

. . .

. . .

Diseases

Findings

d

Findings

Diseases

– about 600 binary (0/1) disease variables representing

diseases that are “present” or “absent”

– about 4000 associated binary (0/1) findings; findings may

be either “positive” or “negative”
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Example cont’d
• The model is based on a number of simplifying assumptions

f

. . .

. . .

Diseases

Findings

d

• Assumptions explicit in the graph:

– relevant variables

– marginal independence of diseases

– conditional independence of findings

• Further assumptions about the probability distribution:

– causal independence

Tommi Jaakkola, MIT CSAIL 13



Assumptions in detail
• Diseases are marginally independent

. . .

. . .

f2

d1 d2

f1

d1 = Hodgkins disease

d2 = Plasma cell myeloma

d3 = ...

• Findings are conditionally independent given the diseases

. . .

. . .

f2

d1 d2

f1

f1 = Bone X-ray fracture

f2 = ...
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Assumptions in detail
• We have to specify how n (potentially 100 or more)

underlying diseases conspire to influence any finding

. . .

f

d1 d2 dn

The size of the conditional probability table for

P (f |d1, d2, d3, . . .) would increase exponentially with the

number of associated diseases

⇒ e.g, causal independence assumption

Tommi Jaakkola, MIT CSAIL 15



Causal independence: noisy-or
• We assume that each finding is negative if all the associated

diseases (if present) independently fail to produce a positive

outcome

. . .

P (fi = 1|other) = qi0

d1 d2 dj

P (fi = 1|dj = 1) = qij

fi

other
dpai

P (fi = 0|dpai) = P (fi = 0|other)
∏
j∈pai

P (fi = 0|dj)

= (1− qi0)
∏
j∈pai

(1− qij)dj

and P (fi = 1|dpai) = 1− P (fi = 0|dpai).
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Joint distribution
• After all these assumptions, we can write down the following

joint distribution over n diseases and m findings

P (f, d) =

[
m∏
i=1

P (fi|dpai)

]  n∏
j=1

P (dj)


where P (fi = 0|dpai) = (1− qi0)

∏
j∈pai

(1− qij)dj

The only adjustable parameters in this model are qij and

P (dj)

f

. . .

. . .

Diseases

Findings

d
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Three inference problems
• Given a set of observed findings f∗ = {f∗

1 , . . . , f
∗
k}, we wish

to infer what the underlying diseases are

f

. . .

. . .

Diseases

Findings

d

1. What are the marginal posterior probabilities over the

diseases?

2. What is the most likely setting of all the underlying disease

variables?

3. Which test should we carry out next in order to get the

most information about the diseases?
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Inference problem cont’d
• For the purposes of inferring the presence or absence of the

underlying diseases, we can ignore any findings that remain

unobserved (as if they were not in the model to begin with)

f

. . .

. . .

Diseases

Findings

d

⇒
*

. . .

. . .

d

f

Findings

Diseases
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First inference problem: posterior marginals
• Given the observations

we already have all

the information, only

implicitly *

. . .

. . .

d

f

Findings

Diseases

• What messages (if any) do the disease variables have to

share for them to be able to compute the posterior marginals

locally?

d1

f1 f2

P (f2|d2, d3)P (f1|d1, d2)

P (d2)P (d1) P (d3)

d3d2
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Inference: graph transformation

d1

f1 f2

P (f2|d2, d3)P (f1|d1, d2)

P (d2)P (d1) P (d3)

d3d2
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Inference: graph transformation
ψ12(d1, d2)

f1 f2

P (f2|d2, d3)P (f1|d1, d2)

P (d2)P (d1) P (d3)

d3d2d1

ψ12(d1, d2) = P (d1)P (d2)P (f∗
1 |d1, d2)
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Inference: graph transformation
ψ23(d2, d3)

f1 f2

P (f2|d2, d3)P (f1|d1, d2)

P (d2)P (d1) P (d3)

d3d2d1

ψ12(d1, d2)

ψ12(d1, d2) = P (d1)P (d2)P (f∗
1 |d1, d2)

ψ23(d2, d3) = P (d3)P (f∗
2 |d2, d3)
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Inference: graph transformation
ψ23(d2, d3)

f1 f2

P (f2|d2, d3)P (f1|d1, d2)

P (d2)P (d1) P (d3)

d3d2d1

ψ12(d1, d2)

ψ12(d1, d2) = P (d1)P (d2)P (f∗
1 |d1, d2)

ψ23(d2, d3) = P (d3)P (f∗
2 |d2, d3)

• Joint distribution as a product of “interaction potentials”

P (d1, d2, d3, data) = ψ12(d1, d2) · ψ23(d2, d3)
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Inference: graph transformation
• We have transformed the Bayesian network into an

undirected graph model (Markov random field):

ψ23(d2, d3)

f1 f2

P (f2|d2, d3)P (f1|d1, d2)

P (d2)P (d1) P (d3)

d3d2d1

ψ12(d1, d2)

⇒

on simple graph separation

d2 d3d1

ψ23(d2, d3)ψ12(d1, d2)

undirected interactions

independence properties based

P (d1, d2, d3, data) = ψ12(d1, d2) · ψ23(d2, d3)
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Marginalization

ψ12(d1, d2)

d2 d3d1

ψ23(d2, d3)

• It suffices to evaluate the following probabilities

P (d1, data) =
∑
d2,d3

P (d1, d2, d3, data)

P (d2, data) =
∑
d1,d3

P (d1, d2, d3, data)

P (d3, data) =
∑
d1,d2

P (d1, d2, d3, data)

These will readily yield the posterior probabilities of interest:

P (d1|data) = P (d1, data)/
∑
d′1

P (d′1, data)
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