HMr CSAI	Machine learning: lecture 23 Tommi S. Jaakkola MIT CSAIL tommi@csail.mit.edu

csail Announcements

- Course evaluations ... on-going
- Project submission (Friday Dec 3):
- only electronic submissions (pdf or ps); see the course website
- if you need an extension (and have a reason), you need to ask. Late submissions are not possible otherwise.
- Final exam, in class (Wed Dec 8):
- a part of the lecture on Monday Dec 6 will be review
- comprehensive (covers all the course material) but the emphasis will be on the material since the midterm
- as promised, EM and HMMs will be on the exam
- open book, laptops fine if not connected

Exact inference: preliminary steps

- Moralization

original graph

Preliminary steps:

1. transform the Bayesian network into an undirected model via moralization ("marry parents")
2. triangulate the resulting undirected graph (add edges)
3. identify the cliques (clusters) of the resulting triangulated graph
4. construct the junction tree from the cliques

Exact inference: preliminary steps cont'd

- Find the maximal cliques of the triangulated graph

$c_{1}=\left\{x_{1}, x_{2}, x_{3}\right\} \quad c_{2}=\left\{x_{2}, x_{3}, x_{4}\right\}$

Exact inference: preliminary steps cont'd

- Find the maximal cliques of the triangulated graph

$c_{1}=\left\{x_{1}, x_{2}, x_{3}\right\}$
$c_{2}=\left\{x_{2}, x_{3}, x_{4}\right\}$
$c_{3}=\left\{x_{3}, x_{4}, x_{5}\right\}$

510
CcAA Exact inference: preliminary steps cont'd

- Find the maximal cliques of the triangulated graph

$c_{1}=\left\{x_{1}, x_{2}, x_{3}\right\} \quad c_{2}=\left\{x_{2}, x_{3}, x_{4}\right\} \quad c_{3}=\left\{x_{3}, x_{4}, x_{5}\right\}$
- Clique trees and junction trees

clique tree

Exact inference: potentials

- Associating graphs and potentials

original graph w/ probs

junction tree

Exact inference: potentials

- Associating graphs and potentials

original graph $\mathrm{w} /$ probabilities junction tree $\mathrm{w} /$ probs

$$
\begin{aligned}
\psi_{c_{1}}\left(x_{1}, x_{2}, x_{3}\right) & =P\left(x_{1}\right) P\left(x_{2}\right) P\left(x_{3} \mid x_{1}, x_{2}\right) \\
\psi_{c_{2}}\left(x_{2}, x_{3}, x_{4}\right) & =P\left(x_{4} \mid x_{2}\right) \\
\psi_{c_{3}}\left(x_{3}, x_{4}, x_{5}\right) & =P\left(x_{5} \mid x_{3}, x_{4}\right) \\
\psi_{s_{12}}\left(x_{2}, x_{3}\right) & =1 \quad \text { (separator) } \\
\psi_{s_{23}}\left(x_{3}, x_{4}\right) & =1 \quad \text { (separator) }
\end{aligned}
$$

Exact inference: message passing

- Select a root clique
- Collect evidence

- Distribute evidence

$$
\underbrace{c_{1}}_{x_{1}, x_{2}, x_{3}}
$$

Exact inference: message passing - Collect evidence

Exact inference: message passing

- Collect evidence

Evaluate new separators:

$$
\begin{aligned}
& \psi_{s_{12}}^{\prime}\left(x_{2}, x_{3}\right)=\sum_{x_{1}} \psi_{c_{1}}\left(x_{1}, x_{2}, x_{3}\right)=P\left(x_{2}, x_{3}\right) \\
& \psi_{s_{23}}^{\prime}\left(x_{3}, x_{4}\right)=\sum_{x_{5}} \psi_{c_{3}}\left(x_{3}, x_{4}, x_{5}\right)=1
\end{aligned}
$$

Exact inference: message passing

- Collect evidence

$$
\begin{aligned}
& \begin{array}{l}
P\left(x_{1}\right) P\left(x_{2}\right) P\left(x_{3} \mid x_{1}, x_{2}\right) \\
c_{1} \underbrace{}_{1}, x_{2}, x_{3} \\
s_{12}, 1 \\
\left.x_{2}, x_{3}\right)_{2}, x_{2}, x_{4}
\end{array} \\
& \underset{P\left(x_{5} \mid x_{3}, x_{4}\right)}{c_{3}} x_{x_{3}, x_{4}, x_{5}}^{x_{3}, x_{1}} \underbrace{x_{2}, x_{3}, x_{4}}_{s_{23}} \underbrace{x_{2}}_{P\left(x_{4} \mid x_{2}\right)}
\end{aligned}
$$

Update clique potentials (based on messages):

$$
\begin{array}{r}
\psi_{c_{2}}\left(x_{2}, x_{3}, x_{4}\right) \leftarrow \underbrace{\frac{\psi_{s_{12}}^{\prime}\left(x_{2}, x_{3}\right)}{\psi_{s_{12}}\left(x_{2}, x_{3}\right)} \cdot \underbrace{\frac{\psi_{s_{23}}^{\prime}\left(x_{3}, x_{4}\right)}{\psi_{s_{23}}\left(x_{3}, x_{4}\right)}}_{m_{3 \rightarrow 2}\left(x_{3}, x_{4}\right)} \cdot \psi_{c_{2}}\left(x_{2}, x_{3}, x_{4}\right)}_{m_{1-2}\left(x_{2}, x_{3}\right)} \\
=P\left(x_{2}, x_{3}\right) \cdot 1 \cdot P\left(x_{4} \mid x_{2}\right)=P\left(x_{2}, x_{3}, x_{4}\right)
\end{array}
$$

followed by $\psi_{s_{12}} \leftarrow \psi_{s_{12}}^{\prime}$ and $\psi_{s_{23}} \leftarrow \psi_{s_{23}}^{\prime}$

- Distribute evidence

$$
\begin{aligned}
& P\left(x_{1}\right) P\left(x_{2}\right) P\left(x_{3} \mid x_{1}, x_{2}\right) \\
& c_{1}{\stackrel{x}{1}, x_{2}, x_{3}}_{x_{3}}^{s_{12} \quad P\left(x_{2}, x_{3}\right)} \underbrace{c_{2}, x_{3}, x_{4}}_{x_{2}, x_{3}} \\
& \underset{P\left(x_{5} \mid x_{3}, x_{4}\right)}{x_{3}, x_{4}, x_{5}} \underbrace{x_{3}, x_{4}}_{s_{23}} \underbrace{P\left(x_{2}, x_{3}, x_{4}\right)}
\end{aligned}
$$

Evaluate new separators:

$$
\begin{aligned}
& \psi_{s_{12}}^{\prime}\left(x_{2}, x_{3}\right)=\sum_{x_{4}} \psi_{c_{2}}\left(x_{2}, x_{3}, x_{4}\right)=P\left(x_{2}, x_{3}\right) \\
& \psi_{s_{23}}^{\prime}\left(x_{3}, x_{4}\right)=\sum_{x_{2}} \psi_{c_{2}}\left(x_{2}, x_{3}, x_{4}\right)=P\left(x_{3}, x_{4}\right)
\end{aligned}
$$

Exact inference: message passing

Exact inference: message passing

- Distribute evidence

$$
\begin{aligned}
& P\left(x_{1}\right) P\left(x_{2}\right) P\left(x_{3} \mid x_{1}, x_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \underset{P\left(x_{5} \mid x_{3}, x_{4}\right)}{c_{3}, x_{4}, x_{5}}-\underbrace{x_{3}, x_{4}}_{s_{23}} 1 \quad P\left(x_{2}, x_{3}, x_{4}\right)
\end{aligned}
$$

Exact inference: message passing

- Distribute evidence

$$
\begin{aligned}
& P\left(x_{1}\right) P\left(x_{2}\right) P\left(x_{3} \mid x_{1}, x_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \underset{P\left(x_{5} \mid x_{3}, x_{4}\right)}{c_{3}} x_{x_{3}, x_{4}, x_{5}}^{x_{x_{3}, x_{9}}}{ }_{s_{23}}^{x_{2}, x_{3}, x_{4}}{ }^{\left(x_{2}, x_{3}, x_{4}\right)}
\end{aligned}
$$

Messages (not explicitly used in the algorithm):

$$
\begin{aligned}
& m_{2 \rightarrow 1}\left(x_{2}, x_{3}\right)=\frac{\psi_{s_{12}}^{\prime}\left(x_{2}, x_{3}\right)}{\psi_{s_{12}}\left(x_{2}, x_{3}\right)}=\frac{P\left(x_{2}, x_{3}\right)}{P\left(x_{2}, x_{3}\right)}=1 \\
& m_{2 \rightarrow 3}\left(x_{3}, x_{4}\right)=\frac{\psi_{s_{232}}^{2}\left(x_{3}, x_{4}\right)}{\psi_{s_{23}}\left(x_{3}, x_{4}\right)}=\frac{P\left(x_{3}, x_{4}\right)}{1}
\end{aligned}
$$

```
50
    CSAIL
    Exact inference: message passing
- Distribute evidence
```

```
Update clique potentials (based on messages):
\(\psi_{c_{1}}\left(x_{1}, x_{2}, x_{3}\right) \leftarrow \frac{\psi_{s_{12}}^{\prime}\left(x_{2}, x_{3}\right)}{\psi_{s_{12}}\left(x_{2}, x_{3}\right)} \psi_{c_{1}}\left(x_{1}, x_{2}, x_{3}\right)=P\left(x_{1}, x_{2}, x_{3}\right)\)
\(\psi_{c_{3}}\left(x_{3}, x_{4}, x_{5}\right) \leftarrow \frac{\psi_{s_{23}}^{\prime}\left(x_{3}, x_{4}\right)}{\psi_{s_{23}}\left(x_{3}, x_{4}\right)} \cdot \psi_{c_{3}}\left(x_{3}, x_{4}, x_{5}\right)=P\left(x_{3}, x_{4}, x_{5}\right)\)
followed by \(\psi_{s_{12}} \leftarrow \psi_{s_{12}}^{\prime}\) and \(\psi_{s_{23}} \leftarrow \psi_{s_{23}}^{\prime}\)
csAIL

\section*{Exact inference}
- After the collect and distribute steps the marginal probabilities are stored locally at the clique potentials (and the separators)
- The algorithm maintains the joint distribution as a product of clique potentials over separators
\[
P\left(x_{1}, \ldots, x_{5}\right)=\frac{\prod_{c \in \mathcal{C}} \psi_{c}\left(\mathbf{x}_{c}\right)}{\prod_{s \in \mathcal{S}} \psi_{s}\left(\mathbf{x}_{s}\right)}
\]
(cf. H-C theorem)

\section*{Outline}
- Learning Bayesian networks: complete data
- estimating the parameters with fixed structure
- learning the graph structure
- Learning Bayesian networks: incomplete data
- EM and structural EM

\section*{Probabilities and conditional tables}
- For simplicity we will consider only Bayesian network models with discrete variables
- A fully parameterized model is one where there are no restrictions on the probability tables describing the conditional (marginal) probabilities

(there are \(1+1+4=6\) adjustable parameters in this model)

\section*{Likelihood and complete data}

When the observed data points are complete, the likelihood can be decomposed into a product of terms involving only each conditional table:
\[
\begin{aligned}
P(D \mid G, \theta)= & \prod_{t=1}^{n} P\left(x_{1}^{t}\right) P\left(x_{2}^{t}\right) P\left(x_{3}^{t} \mid x_{1}^{t}, x_{2}^{t}\right) \\
= & \prod_{x_{1}} P\left(x_{1}\right)^{N\left(x_{1}\right)} \times \prod_{x_{2}} P\left(x_{2}\right)^{N\left(x_{2}\right)} \\
& \times \prod_{x_{1}, x_{2}, x_{3}} P\left(x_{3} \mid x_{1}, x_{2}\right)^{N\left(x_{1}, x_{2}, x_{3}\right)}
\end{aligned}
\]
csAll \(\quad\) ML parameter estimates
 defining the conditional table so that
\[
P\left(x_{3} \mid x_{1}, x_{2}\right)=\theta_{x_{3} \mid x_{1}, x_{2}}
\]
where \(\sum_{x_{3}=1}^{m} \theta_{x_{3} \mid x_{1}, x_{2}}=1\) for all values of \(x_{1}\) and \(x_{2}\).
- The ML estimates of these parameters are simply normalized counts (cf. Markov models):
\[
\hat{\theta}_{x_{3} \mid x_{1}, x_{2}}=\frac{N\left(x_{1}, x_{2}, x_{3}\right)}{N\left(x_{1}, x_{2}\right)}
\]
where \(N\left(x_{1}, x_{2}\right)=\sum_{x_{3}} N\left(x_{1}, x_{2}, x_{3}\right)\).```

