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Announcements
• Course evaluations ... on-going

• Project submission (Friday Dec 3):
– only electronic submissions (pdf or ps); see the course

website
– if you need an extension (and have a reason), you need to

ask. Late submissions are not possible otherwise.

• Final exam, in class (Wed Dec 8):
– a part of the lecture on Monday Dec 6 will be review
– comprehensive (covers all the course material) but the

emphasis will be on the material since the midterm
– as promised, EM and HMMs will be on the exam
– open book, laptops fine if not connected
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Exact inference
• All exact inference algorithms for Bayesian networks perform

essentially the same calculations but operate on different
representations

• The junction tree algorithm is a simple message passing
algorithm over clusters of variables

Preliminary steps:

1. transform the Bayesian network into an undirected model
via moralization (“marry parents”)

2. triangulate the resulting undirected graph (add edges)

3. identify the cliques (clusters) of the resulting triangulated
graph

4. construct the junction tree from the cliques

Tommi Jaakkola, MIT CSAIL 3

Exact inference: preliminary steps
• Moralization
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Exact inference: preliminary steps
• Moralization
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Exact inference: preliminary steps cont’d
• Find the maximal cliques of the triangulated graph
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Exact inference: preliminary steps cont’d
• Find the maximal cliques of the triangulated graph
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Exact inference: preliminary steps cont’d
• Find the maximal cliques of the triangulated graph
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Exact inference: preliminary steps cont’d
• Find the maximal cliques of the triangulated graph

c1

x1 x2

x3

x5

x4

c2
x1 x2

x3

x5

x4

c1

c3

x1 x2

x3

x5

x4

c1

c2

c1 = {x1, x2, x3} c2 = {x2, x3, x4} c3 = {x3, x4, x5}
• Clique trees and junction trees

x3, x4, x5

c1

c2

c3

x2, x3, x4

x1, x2, x3

x3, x4

x2, x3, x4

c1

c3

x1, x2, x3

x3, x4, x5

c2
s12

s23

x2, x3

clique tree junction tree (with separators)

Tommi Jaakkola, MIT CSAIL 14

Exact inference: potentials
• Associating graphs and potentials
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Exact inference: potentials
• Associating graphs and potentials

P (x3|x1, x2)
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ψc1(x1, x2, x3) = P (x1)P (x2)P (x3|x1, x2)

ψc2(x2, x3, x4) = P (x4|x2)

ψc3(x3, x4, x5) = P (x5|x3, x4)

ψs12(x2, x3) = 1 (separator)

ψs23(x3, x4) = 1 (separator)
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Exact inference: message passing
• Select a root clique

• Collect evidence
m1→2(x2, x3)
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Exact inference: message passing
• Collect evidence
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Exact inference: message passing
• Collect evidence
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Evaluate new separators:

ψ′s12
(x2, x3) =

∑
x1

ψc1(x1, x2, x3) = P (x2, x3)

ψ′s23
(x3, x4) =

∑
x5

ψc3(x3, x4, x5) = 1
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Exact inference: message passing
• Collect evidence
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Messages (not explicitly used in the algorithm):

m1→2(x2, x3) =
ψ′s12
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=
P (x2, x3)
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=
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Exact inference: message passing
• Collect evidence

P (x4|x2)
x2, x3, x4

c3

x1, x2, x3

x3, x4, x5

c2

s23

x2, x3

x3, x4

c1

P (x1)P (x2)P (x3|x1, x2)

P (x5|x3, x4)

1

s12 1

Update clique potentials (based on messages):

ψc2(x2, x3, x4) ←
ψ′s12

(x2, x3)
ψs12(x2, x3)︸ ︷︷ ︸
m1→2(x2,x3)

· ψ
′
s23

(x3, x4)
ψs23(x3, x4)

·︸ ︷︷ ︸
m3→2(x3,x4)

ψc2(x2, x3, x4)

= P (x2, x3) · 1 · P (x4|x2) = P (x2, x3, x4)

followed by ψs12 ← ψ′s12
and ψs23 ← ψ′s23
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Exact inference: message passing
• Distribute evidence
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Exact inference: message passing
• Distribute evidence
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Evaluate new separators:

ψ′s12
(x2, x3) =

∑
x4

ψc2(x2, x3, x4) = P (x2, x3)

ψ′s23
(x3, x4) =

∑
x2

ψc2(x2, x3, x4) = P (x3, x4)
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Exact inference: message passing
• Distribute evidence

P (x2, x3, x4)
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1
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Messages (not explicitly used in the algorithm):

m2→1(x2, x3) =
ψ′s12

(x2, x3)
ψs12(x2, x3)

=
P (x2, x3)
P (x2, x3)

= 1

m2→3(x3, x4) =
ψ′s23

(x3, x4)
ψs23(x3, x4)

=
P (x3, x4)

1
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Exact inference: message passing
• Distribute evidence

P (x2, x3, x4)
x2, x3, x4

c3
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x3, x4, x5

c2

s23
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x3, x4
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P (x1)P (x2)P (x3|x1, x2)

P (x5|x3, x4)

1

s12 P (x2, x3)

Update clique potentials (based on messages):

ψc1(x1, x2, x3) ←
ψ′s12

(x2, x3)
ψs12(x2, x3)

ψc1(x1, x2, x3) = P (x1, x2, x3)

ψc3(x3, x4, x5) ←
ψ′s23

(x3, x4)
ψs23(x3, x4)

· ψc3(x3, x4, x5) = P (x3, x4, x5)

followed by ψs12 ← ψ′s12
and ψs23 ← ψ′s23
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Exact inference
• After the collect and distribute steps the marginal

probabilities are stored locally at the clique potentials (and
the separators)

P (x3, x4)

x2, x3, x4
c3

x1, x2, x3

x3, x4, x5

c2

s23

x2, x3

x3, x4

c1

P (x1, x2, x3)

P (x3, x4, x5)

s12

P (x2, x3, x4)

P (x2, x3)

• The algorithm maintains the joint distribution as a product
of clique potentials over separators

P (x1, . . . , x5) =
∏

c∈C ψc(xc)∏
s∈S ψs(xs)

(cf. H-C theorem)
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Outline
• Learning Bayesian networks: complete data

– estimating the parameters with fixed structure
– learning the graph structure

• Learning Bayesian networks: incomplete data

– EM and structural EM
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Probabilities and conditional tables
• For simplicity we will consider only Bayesian network models

with discrete variables

• A fully parameterized model is one where there are
no restrictions on the probability tables describing the
conditional (marginal) probabilities

P (x3|x1, x2) :

hh ht th tt
h 0.9 0.2 0.3 0.6
t 0.1 0.8 0.7 0.4

x3

x1 x2
P (x2) : 0.5

0.5P (x1) : 0.5
0.5

(there are 1+1+4 = 6 adjustable parameters in this model)
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Likelihood and complete data
• When the observed data points are complete, the likelihood

can be decomposed into a product of terms involving only
each conditional table:

P (D|G, θ) =
n∏

t=1

P (xt
1)P (xt

2)P (xt
3|xt

1, x
t
2)

=
∏
x1

P (x1)N(x1) ×
∏
x2

P (x2)N(x2)

×
∏

x1,x2,x3

P (x3|x1, x2)N(x1,x2,x3)
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Likelihood and complete data
• When the observed data points are complete, the likelihood

can be decomposed into a product of terms involving only
each conditional table:

P (D|G, θ) =
n∏

t=1

P (xt
1)P (xt

2)P (xt
3|xt

1, x
t
2)

=
∏
x1

P (x1)N(x1) ×
∏
x2

P (x2)N(x2)

×
∏

x1,x2

∏
x3

P (x3|x1, x2)N(x1,x2,x3)

Each conditional table such as P (x3|x1, x2) for a fixed x1

and x2, can be estimated separately based on the observed
counts such as N(x1, x2, x3).
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ML parameter estimates
• Let θ·|x1,x2

= {θ1|x1,x2
, . . . , θm|x1,x2

} be the parameters
defining the conditional table so that

P (x3|x1, x2) = θx3|x1,x2

where
∑m

x3=1 θx3|x1,x2
= 1 for all values of x1 and x2.

• The ML estimates of these parameters are simply normalized
counts (cf. Markov models):

θ̂x3|x1,x2
=

N(x1, x2, x3)
N(x1, x2)

where N(x1, x2) =
∑

x3
N(x1, x2, x3).
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