

Machine learning: lecture 23

Tommi S. Jaakkola MIT CSAIL *tommi@csail.mit.edu*

Announcements

- Course evaluations ... on-going
- Project submission (Friday Dec 3):
 - only electronic submissions (pdf or ps); see the course website
 - if you need an extension (and have a reason), you need to ask. Late submissions are not possible otherwise.
- Final exam, in class (Wed Dec 8):
 - a part of the lecture on Monday Dec 6 will be review
 - comprehensive (covers all the course material) but the emphasis will be on the material since the midterm
 - as promised, EM and HMMs will be on the exam
 - open book, laptops fine if not connected

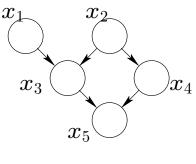
Exact inference

- All exact inference algorithms for Bayesian networks perform essentially the same calculations but operate on different representations
- The junction tree algorithm is a simple message passing algorithm over *clusters of variables*

Preliminary steps:

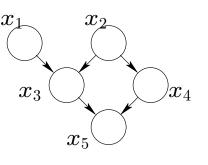
- 1. transform the Bayesian network into an undirected model via moralization ("marry parents")
- 2. triangulate the resulting undirected graph (add edges)
- 3. identify the cliques (clusters) of the resulting triangulated graph
- 4. construct the junction tree from the cliques

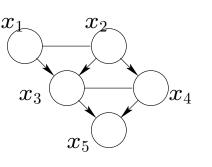
• Moralization



original graph

• Moralization

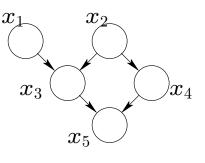


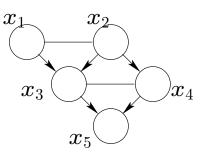


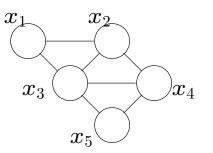
original graph

"marry" parents

• Moralization





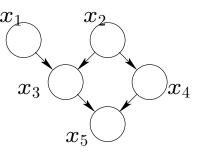


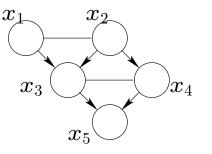
original graph

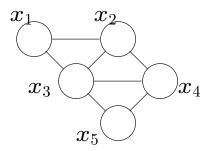
"marry" parents

moral graph

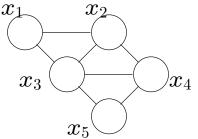
Moralization





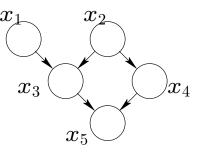


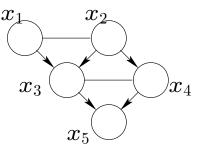
original graph "marry" parents moral graph
Triangulation (add edges so that any cycle of four or more nodes has a "chord")

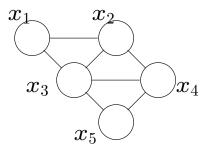


already triangulated

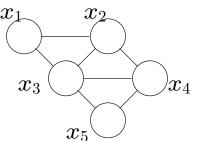
Moralization

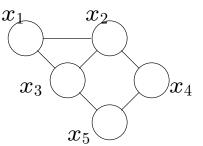






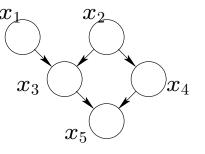
original graph "marry" parents moral graph
Triangulation (add edges so that any cycle of four or more nodes has a "chord")

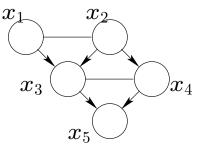


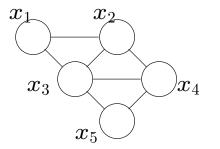


already triangulated not triangulated

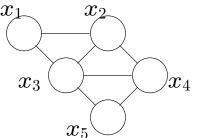
Moralization

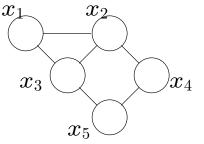


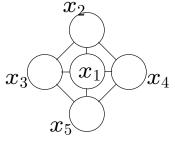




original graph "marry" parents moral graph
Triangulation (add edges so that any cycle of four or more nodes has a "chord")

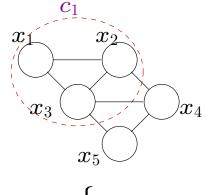






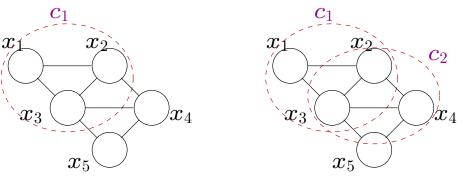
already triangulated not triangulated not triangulated

• Find the maximal cliques of the triangulated graph



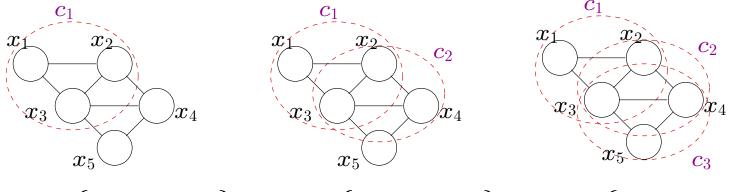
$$c_1 = \{x_1, x_2, x_3\}$$

• Find the maximal cliques of the triangulated graph



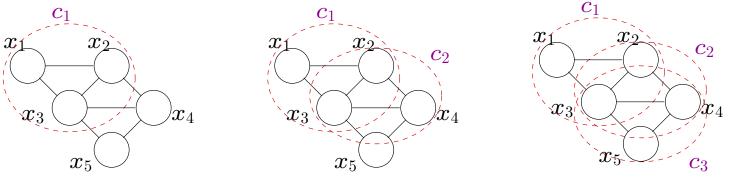
 $c_1 = \{x_1, x_2, x_3\}$ $c_2 = \{x_2, x_3, x_4\}$

• Find the maximal cliques of the triangulated graph



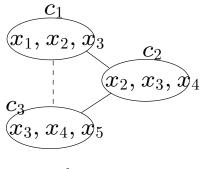
 $c_1 = \{x_1, x_2, x_3\}$ $c_2 = \{x_2, x_3, x_4\}$ $c_3 = \{x_3, x_4, x_5\}$

• Find the maximal cliques of the triangulated graph



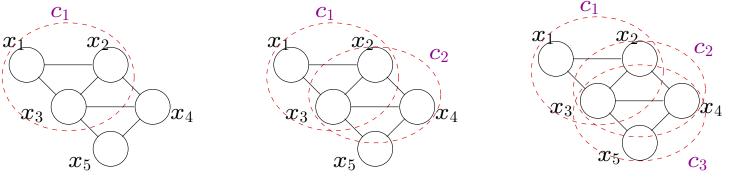
$$c_1 = \{x_1, x_2, x_3\}$$
 $c_2 = \{x_2, x_3, x_4\}$ $c_3 = \{x_3, x_4, x_5\}$

• Clique trees and junction trees

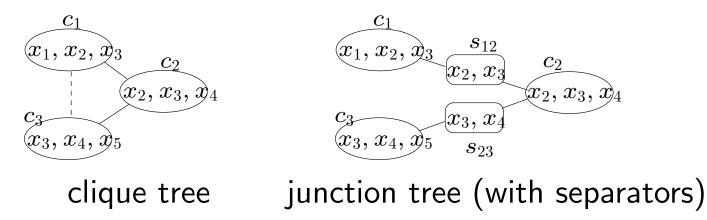


clique tree

• Find the maximal cliques of the triangulated graph

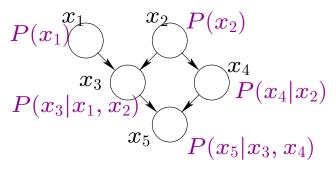


- $c_1 = \{x_1, x_2, x_3\}$ $c_2 = \{x_2, x_3, x_4\}$ $c_3 = \{x_3, x_4, x_5\}$
- Clique trees and junction trees

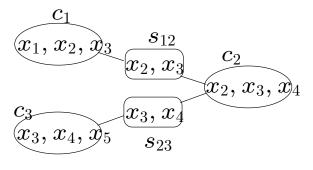


Exact inference: potentials

• Associating graphs and potentials



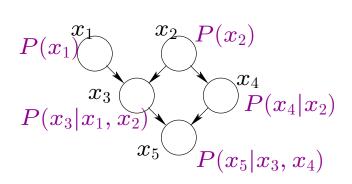
original graph w/ probs



junction tree

Exact inference: potentials

Associating graphs and potentials



original graph w/ probabilities junction tree w/ probs

 $\overset{c_3}{x_3,x_4,x_5}$ $P(x_5|x_3, x_4)$

 x_3, x_4

 c_2

 (x_2, x_3, x)

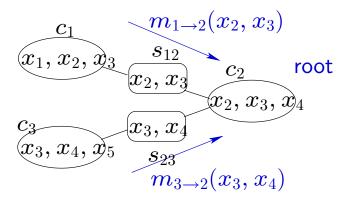
 $P(x_{4}|x_{2})$

 $P(x_1)P(x_2)P(x_3|x_1,x_2)$

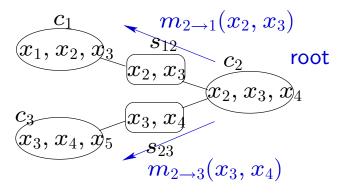
 $c_1 \stackrel{\frown}{\underbrace{(x_1,x_2,x_3)}}$

 $\psi_{c_1}(x_1, x_2, x_3) = P(x_1)P(x_2)P(x_3|x_1, x_2)$ $\psi_{c_2}(x_2, x_3, x_4) = P(x_4 | x_2)$ $\psi_{c_3}(x_3, x_4, x_5) = P(x_5 | x_3, x_4)$ $\psi_{s_{12}}(x_2, x_3) = 1$ (separator) $\psi_{s_{23}}(x_3, x_4) = 1$ (separator)

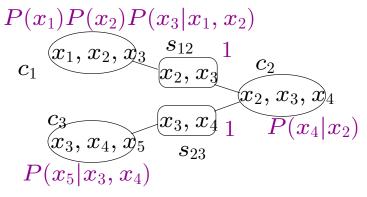
- Select a root clique
- Collect evidence



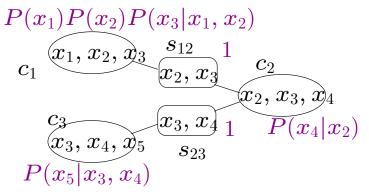
• Distribute evidence



• Collect evidence



• Collect evidence

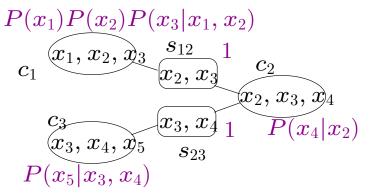


Evaluate new separators:

$$\psi'_{s_{12}}(x_2, x_3) = \sum_{x_1} \psi_{c_1}(x_1, x_2, x_3) = P(x_2, x_3)$$

$$\psi'_{s_{23}}(x_3, x_4) = \sum_{x_5} \psi_{c_3}(x_3, x_4, x_5) = 1$$

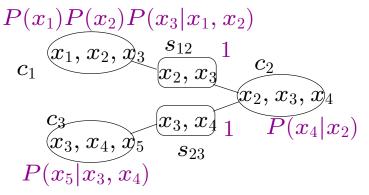
• Collect evidence



Messages (not explicitly used in the algorithm):

$$m_{1\to2}(x_2, x_3) = \frac{\psi'_{s_{12}}(x_2, x_3)}{\psi_{s_{12}}(x_2, x_3)} = \frac{P(x_2, x_3)}{1}$$
$$m_{3\to2}(x_3, x_4) = \frac{\psi'_{s_{23}}(x_3, x_4)}{\psi_{s_{23}}(x_3, x_4)} = \frac{1}{1}$$

• Collect evidence

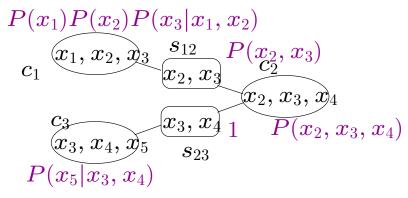


Update clique potentials (based on messages):

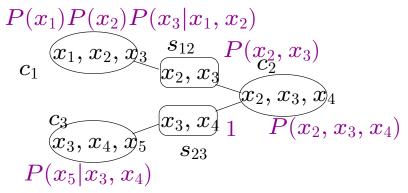
$$\psi_{c_2}(x_2, x_3, x_4) \leftarrow \frac{\psi'_{s_{12}}(x_2, x_3)}{\psi_{s_{12}}(x_2, x_3)} \cdot \frac{\psi'_{s_{23}}(x_3, x_4)}{\psi_{s_{23}}(x_3, x_4)} \cdot \psi_{c_2}(x_2, x_3, x_4)$$
$$= P(x_2, x_3) \cdot 1 \cdot P(x_4 | x_2) = P(x_2, x_3, x_4)$$

followed by $\psi_{s_{12}} \leftarrow \psi'_{s_{12}}$ and $\psi_{s_{23}} \leftarrow \psi'_{s_{23}}$

• Distribute evidence



• Distribute evidence

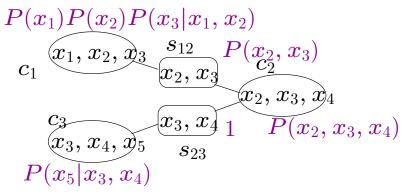


Evaluate new separators:

$$\psi'_{s_{12}}(x_2, x_3) = \sum_{x_4} \psi_{c_2}(x_2, x_3, x_4) = P(x_2, x_3)$$

$$\psi'_{s_{23}}(x_3, x_4) = \sum_{x_2} \psi_{c_2}(x_2, x_3, x_4) = P(x_3, x_4)$$

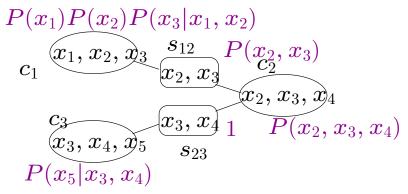
• Distribute evidence



Messages (not explicitly used in the algorithm):

$$m_{2\to 1}(x_2, x_3) = \frac{\psi'_{s_{12}}(x_2, x_3)}{\psi_{s_{12}}(x_2, x_3)} = \frac{P(x_2, x_3)}{P(x_2, x_3)} = 1$$
$$m_{2\to 3}(x_3, x_4) = \frac{\psi'_{s_{23}}(x_3, x_4)}{\psi_{s_{23}}(x_3, x_4)} = \frac{P(x_3, x_4)}{1}$$

• Distribute evidence



Update clique potentials (based on messages):

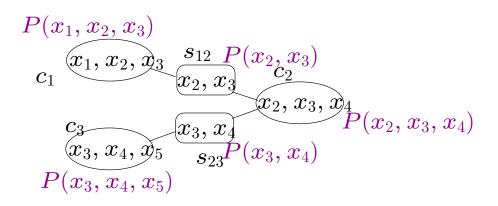
$$\psi_{c_1}(x_1, x_2, x_3) \leftarrow \frac{\psi'_{s_{12}}(x_2, x_3)}{\psi_{s_{12}}(x_2, x_3)}\psi_{c_1}(x_1, x_2, x_3) = P(x_1, x_2, x_3)$$

$$\psi_{c_3}(x_3, x_4, x_5) \leftarrow \frac{\psi'_{s_{23}}(x_3, x_4)}{\psi_{s_{23}}(x_3, x_4)} \cdot \psi_{c_3}(x_3, x_4, x_5) = P(x_3, x_4, x_5)$$

followed by $\psi_{s_{12}} \leftarrow \psi'_{s_{12}}$ and $\psi_{s_{23}} \leftarrow \psi'_{s_{23}}$

Exact inference

 After the collect and distribute steps the marginal probabilities are stored *locally* at the clique potentials (and the separators)



• The algorithm maintains the joint distribution as a product of clique potentials over separators

$$P(x_1, \dots, x_5) = \frac{\prod_{c \in \mathcal{C}} \psi_c(\mathbf{x}_c)}{\prod_{s \in \mathcal{S}} \psi_s(\mathbf{x}_s)}$$

(cf. H-C theorem)

Outline

- Learning Bayesian networks: complete data
 - estimating the parameters with fixed structure
 - learning the graph structure
- Learning Bayesian networks: incomplete data
 - EM and structural EM

Probabilities and conditional tables

- For simplicity we will consider only Bayesian network models with discrete variables
- A fully parameterized model is one where there are no restrictions on the probability tables describing the conditional (marginal) probabilities

(there are 1+1+4=6 adjustable parameters in this model)

Likelihood and complete data

• When the observed data points are complete, the likelihood can be decomposed into a product of terms involving only each conditional table:

$$P(D|G,\theta) = \prod_{t=1}^{n} P(x_1^t) P(x_2^t) P(x_3^t | x_1^t, x_2^t)$$

=
$$\prod_{x_1} P(x_1)^{N(x_1)} \times \prod_{x_2} P(x_2)^{N(x_2)}$$

$$\times \prod_{x_1, x_2, x_3} P(x_3 | x_1, x_2)^{N(x_1, x_2, x_3)}$$

Likelihood and complete data

• When the observed data points are complete, the likelihood can be decomposed into a product of terms involving only each conditional table:

$$P(D|G,\theta) = \prod_{t=1}^{n} P(x_1^t) P(x_2^t) P(x_3^t | x_1^t, x_2^t)$$

=
$$\prod_{x_1} P(x_1)^{N(x_1)} \times \prod_{x_2} P(x_2)^{N(x_2)}$$

$$\times \prod_{x_1, x_2} \prod_{x_3} P(x_3 | x_1, x_2)^{N(x_1, x_2, x_3)}$$

Each conditional table such as $P(x_3|x_1, x_2)$ for a fixed x_1 and x_2 , can be estimated separately based on the observed counts such as $N(x_1, x_2, x_3)$.

ML parameter estimates

• Let $\theta_{\cdot|x_1,x_2} = \{\theta_{1|x_1,x_2},\ldots,\theta_{m|x_1,x_2}\}$ be the parameters defining the conditional table so that

$$P(x_3|x_1, x_2) = \theta_{x_3|x_1, x_2}$$

where $\sum_{x_3=1}^{m} \theta_{x_3|x_1,x_2} = 1$ for all values of x_1 and x_2 .

• The ML estimates of these parameters are simply normalized counts (cf. Markov models):

$$\hat{\theta}_{x_3|x_1,x_2} = \frac{N(x_1, x_2, x_3)}{N(x_1, x_2)}$$

where $N(x_1, x_2) = \sum_{x_3} N(x_1, x_2, x_3)$.