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Sosan Topics

e Beyond linear regression models
— additive regression models, examples
— generalization and cross-validation
— population minimizer

e Statistical regression models
— model formulation, motivation
— maximum likelihood estimation

Tommi Jaakkola, MIT CSAIL 2

IRl
1q 1
1

“CsAlL Linear regression
e Linear regression functions,

f:R—=R  f(zr;w)=wo+ wiz, or
fRESR fxw) =wo+uwrzr + ... +wazq

combined with the squared loss, are convenient because they
are linear in the parameters.

Tommi Jaakkola, MIT CSAIL 3

iy

oA Linear regression

e Linear regression functions,
f:R—=R  f(zr;w)=wo+ wix, or
fRESR fxw) =wo+uwizr + ... +wazq

combined with the squared loss, are convenient because they
are linear in the parameters.
— we get closed form estimates of the parameters

w = (XTX)"'X"y

where, for example, y = [y1,...,yn]T.
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“CsAlL Linear regression
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e Linear regression functions,
fiR—=R  flz;w)=wo+wiz, or
RIS R f(xW) = wo+ wrm1 + ...+ wazy
combined with the squared loss, are convenient because they
are linear in the parameters.
— we get closed form estimates of the parameters
w= (X"X)" X"y
where, for example, y = [y1,...,yn]T.

— the resulting prediction errors ¢; = y; — f(x;; W) are
uncorrelated with any linear function of the inputs x.
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oA Linear regression

e Linear regression functions,
f:R—>R  f(z;w)=w+wiz, or
f:RE=R  f(x;w) =wo+wizs + ...+ wexy
combined with the squared loss, are convenient because they
are linear in the parameters.
— we get closed form estimates of the parameters
w = (XTX)"1xTy
where, for example, y = [y1,...,yn]T.

— the resulting prediction errors ¢; = y; — f(x;; W) are
uncorrelated with any linear function of the inputs x.

— we can easily extend these to non-linear functions of the
inputs while still keeping them linear in the parameters
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“CsAlL Beyond linear regression
e Example extension: m!”* order polynomial regression where
f:R — R is given by

flz;w) =wo + w1z + ... 4+ W1 2™ 7+ wpz™

— linear in the parameters, non-linear in the inputs
— solution as before

AL Polynomial regression

degree = 3
w = (XTX)"1xTy
1
J
where
Wo 1z 2?2 Pt m
R w 1 xp a3 x5
W = Y, X= 2o 2
Win 1 z, 22 T ’ ’
" " degree = 5 degree = 7
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Sesan Complexity and overfitting Fsan Avoiding over-fitting: cross-validation

e With limited training examples our polynomial regression
model may achieve zero training error but nevertless has a
large test (generalization) error

_ 1< .
train E;(yt—f(xt;w))z%()

test B y)~p (Y — f(7; w))? >0

El [ i

o We suffer from over-fitting when the training error no longer
bears any relation to the generalization error
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e Cross-validation allows us to estimate the generalization error
based on training examples alone

Leave-one-out cross-validation treats
each training example in turn as a
test example:

1 n

V=3 (- feaw ) mmmees

n -
i=1
where W? are the least squares
estimates of the parameters without
the ¥ training example.
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“cae Polynomial regression: example cont’d

=l [ 1 E El [ T

degree = 5, CV = 6.0 degree =7, CV = 15.6
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“CsAIL Additive models

e More generally, predictions can be based on a linear
combination of a set of basis functions (or features)
{$1(x),...,¢m(x)}, where each ¢;(x) : R — R, and

JwW) = wo + wih1(X) + ... + Winm (%)

e Examples:
If p;(x) =2, i=1,...,m, then

flzyw) =wo +wnx + ...+ wp_12™ L+ wz™
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esan Additive mOdels
e More generally, predictions can be based on a linear

combination of a set of basis functions (or features)
{$1(x),...,¢m(x)}, where each ¢;(x) : R — R, and
W) = wo +wid1(x) + ... + Wi (x)

e Examples:

S Additive models cont’d

e The basis functions can capture various (e.g., qualitative)
properties of the inputs.

For example: we can try to rate companies based on text
descriptions

X

text document (collection of words)

¢i(x) = {

1 if word i appears in the document

If ¢i(x) =2 i=1,...,m, then 0 otherwise
flz;w) =wo +wiz+ ...+ Win_12™ " + W™ fxw) = wo+ Z w;igi(x)
iewords
If m=d, ¢;(x) =x;,i=1,...,d, then
fx;w) =wo+wizr + ...+ waxy
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T Additive models cont’d T Additive models cont’d

e We can also make predictions by gauging the similarity of
examples to “prototypes”.

For example, our additive regression function could be
f(X; W) = wp + w1¢1(x) +...+ w7n¢m(x)

where the basis functions are “radial basis functions”

1
or(x) = exp{ —@”X—ka}

measuring the similarity to the prototypes; o2 controls how
quickly the basis function vanishes as a function of the
distance to the prototype.

(training examples themselves could serve as prototypes)
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e We can view the additive models graphically in terms of
simple “units” and “weights”

X To

e In neural networks the basis functions themselves have
adjustable parameters (cf. prototypes)
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“Gann Squared loss and population minimizer

e What do we get if we have unlimited training examples
(the whole population) and no constraints on the regression
function?

minimize E(, yop (¥ — f(@))?

with respect to an unconstrained function f : R — R
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“Gane Squared loss and population minimizer

e To minimize
E(z,y)NP (y - f(x))Z = E;vp, EyNPy\:I;(y - f(z))g

we can focus on each x separately since f(z) can be chosen
independently for each different x. For any particular x we
can

9 2
WEZ/NPy\z(y — f(z))

2B, (y — f())

2AE{yla} — f(a)) =0

Thus the function we are trying to approximate is the
conditional expectation

f(@) = E{ylz}
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“csanL TOpiCS

e Beyond linear regression models
— additive regression models, examples
— generalization and cross-validation
— population minimizer

e Statistical regression models
— model formulation, motivation
— maximum likelihood estimation
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“Csan Statistical view of linear regression

e In a statistical regression model we model both the function
and noise

Observed output = function + noise

fosw) +e

Y

where, e.g., e ~ N(0,02).

e Whatever we cannot capture
with our chosen family of
functions will be interpreted as

noise
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Fsan Statistical view of linear regression
e f(x;w) is trying to capture the mean of the observations y

given the input x:
E{ylx} = B{f(xw)+e[x}
fxw)
where E{y|x} is the conditional expectation of y given

x, evaluated according to the model (not according to the
underlying distribution P)

-
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Sesan Statistical view of linear regression
o According to our statistical model

y=flxw)+e e~ N(0,0%)

the outputs y given x are normally distributed with mean
f(x;w) and variance o2

2 1 1 ) 9
p(y|X,W,O’ ) - Wexp{ 7ﬁ(y - f(X, W)) }

(we model the uncertainty in the predictions, not just the
mean)

e Loss function? Estimation?
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Soan Maximum likelihood estimation S Maximum likelihood estimation cont’d

e Given observations D,, = {(x1,%1), - -, (Xn, Yn)} we find the Likelihood of the observed outputs:

parameters w that maximize the (conditional) likelihood of
the outputs

n
L(Dp;w,0?) = [ [ plyilxi, w, 0%)
=1

Example: linear function

plylx, w,o?) =

1 1 9 .
WGXP{ *@(y — wp — W) }

] [ 1

(why is this a bad fit according to the likelihood criterion?)
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L(Da w, 02) = H P(yz‘x’n w, 02)

i=1

e It is often easier (but equivalent) to try to maximize the
log-likelihood:

n
(D;w,0%) = logL(D;w,0%) = log P(yilxi, w,0?)

=1

- 1
=2 (_ﬁ(yi — f(xi;w))? = log V2W2)

g

=1
1)\ < 9
= (722 > (i — flxiw)’+ .
=1
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“aae Maximum likelihood estimation cont’d
e Maximizing log-likelihood is equivalent to minimizing
empirical loss when the loss is defined according to

Loss(yi, f(x;w)) = —log P(yi|Xi7W702)

Loss defined as the negative log-probability is known as the
log-loss.
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“CsAIL Maximum likelihood estimation cont’d
e The log-likelihood of observations

n
log L(D:w,0%) =) log P(yilx;, w, %)
i=1
is a generic fitting criterion and can be used to estimate the

2

noise variance o~ as well.

e Let W be the maximum likelihood (here least squares) setting
of the parameters. What is the maximum likelihood estimate
of o2, obtained by solving

9 2
. =0 ?
902 log L(D;w,0°) =0 7
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Soan Maximum likelihood estimation cont’d
e The log-likelihood of observations

n
log L(D:w,0%) =) log P(yilx;, w, %)
i=1
is a generic fitting criterion and can be used to estimate the

2

noise variance o~ as well.

e Let W be the maximum likelihood (here least squares) setting
of the parameters. The maximum likelihood estimate of the
noise variance o? is

o 1L .
6% = ;;(yi — f(xiw))?

i.e., the mean squared prediction error.
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