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Topics
• Parameter uncertainty

– regression model, underlying model
– mean and variance of the ML estimator

• Active learning
– measures of uncertainty
– selection criteria, algorithms
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Polynomial regression
• Consider again a simple mth degree polynomial regression

model

y = w0 + w1x + . . . + wmxm + ε, ε ∼ N(0,σ2)

where σ2 is assumed fixed (known).
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Polynomial regression
• Consider again a simple mth degree polynomial regression

model

y = w0 + w1x + . . . + wmxm + ε, ε ∼ N(0,σ2)

where σ2 is assumed fixed (known).

• In this model the outputs {y1, . . . , yn} corresponding to any
inputs {x1, . . . , xn} are generated according to

y = Xw + e, where

y =

 y1

· · ·
yn

 , X =

 1 x1 . . . xm
1

· · · · · · · · ·
1 xn . . . xm

n

 , e =

 ε1
· · ·
εn


and εi ∼ N(0,σ2), i = 1, . . . , n.
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Models and accuracy
• We are interested in studying how the choice of inputs
{x1, . . . , xn} or, equivalently, X, affects the accuracy of our
regression model
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Models and accuracy
• We are interested in studying how the choice of inputs
{x1, . . . , xn} or, equivalently, X, affects the accuracy of our
regression model

• Our model for the outputs y = {y1, . . . , yn} given X is

y = Xw + e, e ∼ N(0,σ2I)
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Models and accuracy
• We are interested in studying how the choice of inputs
{x1, . . . , xn} or, equivalently, X, affects the accuracy of our
regression model

• Our model for the outputs y = {y1, . . . , yn} given X is

y = Xw + e, e ∼ N(0,σ2I)

• We assume also that the training outputs are actually
generated by a model in this class with some fixed but
unknown parameters w∗ (same σ2):

y = Xw∗ + e, e ∼ N(0,σ2I)
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Models and accuracy
• We are interested in studying how the choice of inputs
{x1, . . . , xn} or, equivalently, X, affects the accuracy of our
regression model

• Our model for the outputs y = {y1, . . . , yn} given X is

y = Xw + e, e ∼ N(0,σ2I)

• We assume also that the training outputs are actually
generated by a model in this class with some fixed but
unknown parameters w∗ (same σ2):

y = Xw∗ + e, e ∼ N(0,σ2I)

• We can now ask, for a given X, how accurately we are able
to recover the “true” parameters w∗
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ML estimator, uncertainty
• The ML estimator ŵ, viewed here as a function of the

outputs y for a fixed X, is given by

ŵ = (XTX)−1XTy
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ML estimator, uncertainty
• The ML estimator ŵ, viewed here as a function of the

outputs y for a fixed X, is given by

ŵ = (XTX)−1XTy

• We need to understand how ŵ varies in relation to w∗ when
the outputs are generated according to

y = Xw∗ + e, e ∼ N(0,σ2I)
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ML estimator, uncertainty
• The ML estimator ŵ, viewed here as a function of the

outputs y for a fixed X, is given by

ŵ = (XTX)−1XTy

• We need to understand how ŵ varies in relation to w∗ when
the outputs are generated according to

y = Xw∗ + e, e ∼ N(0,σ2I)

• In the absence of noise e, the ML estimator would recover
w∗ exactly (with only minor constraints on X):

ŵ = (XTX)−1XT (Xw∗)

= (XTX)−1(XTX)w∗

= w∗
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ML estimator and noise
• In the presence of noise we can still use the fact that

y = Xw∗ + e to simplify the parameter estimates

ŵ = (XTX)−1XTy

= (XTX)−1XT (Xw∗ + e)

= (XTX)−1(XTX)w∗ + (XTX)−1XTe

= w∗ + (XTX)−1XTe

So the ML estimate is the correct parameter vector plus an
estimate based purely on noise.
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ML estimator
• Since the ML estimator

ŵ = w∗ + (XTX)−1XTe

is a linear function of normally distributed noise e, it is also
normally distributed.

• To fully characterize its distribution, given X, we only need
to evaluate its

mean

µŵ = E{ ŵ |X}

and covariance

Cŵ,ŵ = E{ (ŵ − µŵ)(ŵ − µŵ)T |X}
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ML estimator: mean
• Since the noise is zero mean by assumption, our parameter

estimator is unbiased:

E{ ŵ |X} = w∗ + E
{
(XTX)−1XTe |X}

= w∗ + (XTX)−1XTE {e |X}
= w∗ + (XTX)−1XT0

= w∗
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ML estimator: covariance
• We will again use the decomposition

ŵ = w∗ + (XTX)−1XTe

and the fact that the mean is w∗, and get

E
{

(ŵ −w∗)(ŵ −w∗)T |X}
= E

{ [
(XTX)−1XTe

][
(XTX)−1XTe

]T ∣∣X}
= E

{ [
(XTX)−1XTe

][
eTX(XTX)−1

] ∣∣X}
=

[
(XTX)−1XT

]
E

{
eeT

∣∣X} [
X(XTX)−1

]
=

[
(XTX)−1XT

]
σ2I

[
X(XTX)−1

]
= σ2

[
(XTX)−1XTX(XTX)−1

]
= σ2 (XTX)−1
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ML estimator: summary
• When the assumptions in the polynomial regression model

are correct, the ML (least squares) estimator ŵ, given X,
follows a simple Gaussian distribution:

ŵ ∼ N(w∗, σ2(XTX)−1 )

(the result naturally extends to any additive model)

• We can now study how the uncertainty (covariance) of this
estimator depends on the choice of input points or X
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Topics
• Parameter uncertainty

– regression model, underlying model
– mean and variance of the ML estimator

• Active learning
– measures of uncertainty
– selection criteria, algorithms
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Active learning
• The ability to guide the selection of training inputs can

substantially improve the accuracy of predictions when the
data is otherwise limited

– e.g., select specific documents to classify, faces to label,
cars to test for fuel efficiency, etc.

• In active learning we try to optimize the selection of
training inputs so as to maximally reduce model/prediction
uncertainty
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Active regression
• For any set of training inputs X the resulting uncertainty

about the parameters is characterized by the covariance
matrix σ2(XTX)−1 of the Gaussian distribution

ŵ ∼ N(w∗, σ2(XTX)−1 )

Note that the covariance matrix does not depend on the
training outputs!

• We’d like to select input points, specify X, so as to minimize
any residual “uncertainty”; need to define exactly how to
measure uncertainty based on the covariance
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Parameter uncertainty
• Determinant of the covariance matrix is one possible measure

of uncertainty, capturing the “volume” of variation around
the mean.

• We can therefore find n inputs x1, . . . , xn, which determine
the matrix X, so as to minimize the determinant of the
covariance matrix (σ2 only affects the overall scaling, not
the choice of points):

det
[
(XTX)−1

]
• Note that since the covariance does not depend on the

training outputs, we can select the inputs either sequentially
or prior to seeing any outputs
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Determinant as a measure of “volume”
• Any covariance matrix has an eigen-decomposition:

C = R

 σ2
1

. . .
σ2

m

RT

where the orthonormal rotation matrix R specifies the
principal axes of variation and each eigenvalue σ2

i gives
the variance along one of the principal directions

• The “volume” of a Gaussian
distribution is a function of only
σ2

i , i = 1, . . . ,m. Specifically

“volume” ∝
m∏

i=1

σi =
√

det C
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Determinant criterion: example
• 1st order polynomial regression within x ∈ [−1, 1]

f(x;w) = w0 + w1x

• What are the first two points that would we select?
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Determinant criterion: example
• 1st order polynomial regression within x ∈ [−1, 1]

f(x;w) = w0 + w1x

• What are the first two points that would we select?
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x1 = 1, x2 = −1
(the two points have to be symmetric around zero)
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Determinant criterion: example
• 2nd order polynomial regression within x ∈ [−1, 1]

f(x;w) = w0 + w1x + w2x
2

What the first three points that we would select?
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Determinant criterion: example
• 2nd order polynomial regression within x ∈ [−1, 1]

f(x;w) = w0 + w1x + w2x
2

What the first three points that we would select?
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x1 = −1, x2 = 0, x3 = 1
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Sequential selection
• The determinant criterion is based on the uncertainty in the

parameter values, not directly that of the predictions

• We can devise a sequential selection criterion that aims to
minimize the variance of the predictions directly

• For example: the prediction at a new point x is

f(x; ŵ) = ŵ0 + ŵ1x =
[

1
x

]T

ŵ,

with variance

V ar { f(x; ŵ) } =
[

1
x

]T

Cŵ,ŵ

[
1
x

]
= σ2

[
1
x

]T

(XTX)−1

[
1
x

]
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Sequential selection cont’d

V ar { f(x; ŵ) } = σ2

[
1
x

]T

(XTX)−1

[
1
x

]
– σ2 only affects the overall scale (set to 1 from hereafter)
– the variance is a function of both the query point x and

the past inputs or X

• Assuming the input points are contained within, e.g., an
interval X , we can select the next input to be the point of
most uncertain prediction:

xnew = argmax
x∈X

{
V ar { f(x; ŵ) }

}
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Sequential selection: example
• 2nd order polynomial regression within x ∈ [−1, 1]

f(x; ŵ) = ŵ0 + ŵ1x + ŵ2x
2

A priori selected inputs x1 = −1, x2 = 0, x3 = 1.

V ar { f(x; ŵ) } =

 1
x
x2


T

(XTX)−1

 1
x
x2


where X =

 1 x1 x2
1

1 x2 x2
2

. . . . . . . . .
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Example cont’d
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Sequential selection: properties
• In the linear/additive regression context the prediction

variance is uniformly non-increasing

C = (XTX)−1 covariance of ŵ

A = (XTX) inverse covariance

V ar { f(x; ŵ) } =

 1
x
x2


T

C

 1
x
x2

 =

 1
x
x2


T

A−1

 1
x
x2


It suffices to show that the eigenvalues of A can only increase
(or remain the same) as a result of adding new inputs.
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Brief derivation
Suppose we add any valid input x′,

A′ =
[

1 x′ x′2

X

]T [
1 x′ x′2

X

]

= XTX +

 1
x′

x′2


 1

x′

x′2


T

= A +

 1
x′

x′2


 1

x′

x′2


T

In other words, we add to A a matrix whose eigenvalues are
all non-negative ⇒ eigenvalues of A are non-decreasing
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