

• We are interested in stud	nd accuracy ying how the choice of inputs y, X , affects the accuracy of our	$\{x_1, \dots $ regressi	Models and accuracy e interested in studying how the choice, x_n or, equivalently, \mathbf{X} , affects the accur ion model odel for the outputs $\mathbf{y} = \{y_1, \dots, y_n\}$ given $\mathbf{y} = \mathbf{X}\mathbf{w} + \mathbf{e}, \mathbf{e} \sim N(0, \sigma^2 \mathbf{I})$	acy of our
Tommi Jaakkola, MIT CSAIL	5	Tommi Jaakkola, MI	AIT CSAIL	6

ML estimator, uncertainty
The ML estimator ŵ, viewed here as a function of the outputs y for a fixed X, is given by ŵ = (X^TX)⁻¹X^Ty
We need to understand how ŵ varies in relation to w* when the outputs are generated according to y = Xw* + e, e ~ N(0, σ²I)
In the absence of noise e, the ML estimator would recover w* exactly (with only minor constraints on X):
ŵ = (X^TX)⁻¹X^T(Xw*)

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} (\mathbf{X} \mathbf{w}^T)$$
$$= (\mathbf{X}^T \mathbf{X})^{-1} (\mathbf{X}^T \mathbf{X}) \mathbf{w}^*$$
$$= \mathbf{w}^*$$

Tommi Jaakkola, MIT CSAIL

ML estimator and noise

- In the presence of noise we can still use the fact that $\mathbf{y}=\mathbf{X}\mathbf{w}^*+\mathbf{e} \text{ to simplify the parameter estimates}$

$$\hat{\mathbf{w}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

= $(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T (\mathbf{X} \mathbf{w}^* + \mathbf{e})$
= $(\mathbf{X}^T \mathbf{X})^{-1} (\mathbf{X}^T \mathbf{X}) \mathbf{w}^* + (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{e}$
= $\mathbf{w}^* + (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{e}$

So the ML estimate is the correct parameter vector plus an estimate based purely on noise.

12

ML estimator ML estimator: mean Since the ML estimator • Since the noise is zero mean by assumption, our parameter estimator is unbiased: $\hat{\mathbf{w}} = \mathbf{w}^* + (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{e}$ $E\{\hat{\mathbf{w}} | \mathbf{X}\} = \mathbf{w}^* + E\{(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{e} | \mathbf{X}\}$ is a linear function of normally distributed noise e, it is also $= \mathbf{w}^* + (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T E \{ \mathbf{e} | \mathbf{X} \}$ normally distributed. $= \mathbf{w}^* + (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{0}$ • To fully characterize its distribution, given X, we only need to evaluate its $= \mathbf{w}^*$ mean $\mu_{\hat{\mathbf{w}}} = E\{\,\hat{\mathbf{w}}\,|\mathbf{X}\}$ and covariance $C_{\hat{\mathbf{w}},\hat{\mathbf{w}}} = E\{ (\hat{\mathbf{w}} - \mu_{\hat{\mathbf{w}}}) (\hat{\mathbf{w}} - \mu_{\hat{\mathbf{w}}})^T | \mathbf{X} \}$

13

Tommi Jaakkola, MIT CSAIL

14

Tommi Jaakkola, MIT CSAIL

ML estimator: covariance ML estimator: summary • We will again use the decomposition • When the assumptions in the polynomial regression model are correct, the ML (least squares) estimator $\hat{\mathbf{w}},$ given $\mathbf{X},$ $\hat{\mathbf{w}} = \mathbf{w}^* + (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{e}$ follows a simple Gaussian distribution: and the fact that the mean is \mathbf{w}^* , and get $\hat{\mathbf{w}} \sim N(\mathbf{w}^*, \sigma^2 (\mathbf{X}^T \mathbf{X})^{-1})$ $E\left\{\left(\hat{\mathbf{w}}-\mathbf{w}^{*}\right)\left(\hat{\mathbf{w}}-\mathbf{w}^{*}\right)^{T}|\mathbf{X}\right\}$ (the result naturally extends to any additive model) $= E\left\{\left[(\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}\mathbf{e}\right]\left[(\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}\mathbf{e}\right]^{T}\left|\mathbf{X}\right\}\right.$ • We can now study how the uncertainty (covariance) of this $= E\left\{\left[(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{e}\right]\left[\mathbf{e}^T\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\right] | \mathbf{X}\right\}$ estimator depends on the choice of input points or ${f X}$ $= \left[(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \right] E \left\{ \mathbf{e} \mathbf{e}^T \left| \mathbf{X} \right\} \left[\mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} \right] \right.$ $= \left[(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \right] \sigma^2 \mathbf{I} \left[\mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} \right]$ $= \sigma^2 \left[(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} \right]$ $= \sigma^2 (\mathbf{X}^T \mathbf{X})^{-1}$ Tommi Jaakkola, MIT CSAIL 15 Tommi Jaakkola, MIT CSAIL 16

Topics **Active learning** • The ability to guide the selection of training inputs can • Parameter uncertainty - regression model, underlying model substantially improve the accuracy of predictions when the - mean and variance of the ML estimator data is otherwise limited - e.g., select specific documents to classify, faces to label, Active learning - measures of uncertainty cars to test for fuel efficiency, etc. - selection criteria, algorithms . In active learning we try to optimize the selection of training inputs so as to maximally reduce model/prediction uncertainty Tommi Jaakkola, MIT CSAIL Tommi Jaakkola, MIT CSAIL 17 18

Tommi Jaakkola, MIT CSAIL

Brief derivation

Suppose we add any valid input x',

$$\begin{split} \mathbf{A}' &= \left[\begin{array}{c} 1 \ x' \ x'^2 \end{array} \right]^T \left[\begin{array}{c} 1 \ x' \ x'^2 \end{array} \right] \\ &= \mathbf{X}^T \mathbf{X} + \left[\begin{array}{c} 1 \\ x' \\ x'^2 \end{array} \right] \left[\begin{array}{c} 1 \\ x' \\ x'^2 \end{array} \right]^T \\ &= \mathbf{A} + \left[\begin{array}{c} 1 \\ x' \\ x'^2 \end{array} \right] \left[\begin{array}{c} 1 \\ x' \\ x'^2 \end{array} \right]^T \end{split}$$

In other words, we add to ${\bf A}$ a matrix whose eigenvalues are all non-negative \Rightarrow eigenvalues of ${\bf A}$ are non-decreasing

Tommi Jaakkola, MIT CSAIL

31