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Eosan TOpiCS

o Parameter uncertainty
— regression model, underlying model
— mean and variance of the ML estimator

e Active learning
— measures of uncertainty
— selection criteria, algorithms
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oA Polynomial regression oA Polynomial regression
o Consider again a simple m*" degree polynomial regression o Consider again a simple m*" degree polynomial regression
model model

y = wo+wiz+...+wnpz™+e€ e~ N(0,0?)

where o2 is assumed fixed (known).
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y = wo+wiz+...+wnpz™+e e~ N(0,0?)

where o2 is assumed fixed (known).

e In this model the outputs {y1,...,y,} corresponding to any
inputs {z1,...,x,} are generated according to

y = Xw+e, where

and ¢, ~ N(0,0%),i=1,...,n.
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oA Models and accuracy

e We are interested in studying how the choice of inputs
{#1,...,z,} or, equivalently, X, affects the accuracy of our
regression model
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oA Models and accuracy

e We are interested in studying how the choice of inputs
{#1,...,z,} or, equivalently, X, affects the accuracy of our
regression model

e Our model for the outputs y = {y1,...,yn} given X is
y=Xw+e, e~ N(0,0%)

Tommi Jaakkola, MIT CSAIL




“CsAlL Models and accuracy
e We are interested in studying how the choice of inputs
{x1,...,z,} or, equivalently, X, affects the accuracy of our
regression model

iy

e Our model for the outputs y = {y1,...,yn} given X is
y=Xw+e, e~ N(0,0°0)
e We assume also that the training outputs are actually

generated by a model in this class with some fixed but
unknown parameters w* (same o2):

y=Xw"+e, e~ N(0,0%)
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oA Models and accuracy

e We are interested in studying how the choice of inputs
{z1,...,2,} or, equivalently, X, affects the accuracy of our
regression model

e Our model for the outputs y = {y1,...,yn} given X is
y=Xw+e, e~ N(0,0°0)
e We assume also that the training outputs are actually

generated by a model in this class with some fixed but
unknown parameters w* (same o?):

y=Xw"+e, e~ N(0,0%)

e We can now ask, for a given X, how accurately we are able
to recover the “true” parameters w*

Tommi Jaakkola, MIT CSAIL 8

“CsAlL ML estimator, uncertainty

e The ML estimator w, viewed here as a function of the
outputs y for a fixed X, is given by

iy

w = (XTX)"1xTy
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oA ML estimator, uncertainty

e The ML estimator w, viewed here as a function of the
outputs y for a fixed X, is given by

w = (XTX)"1xTy

e We need to understand how W varies in relation to w* when
the outputs are generated according to

y=Xw"+e, e~ N(0,0%)
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v, ML estimator, uncertainty
e The ML estimator w, viewed here as a function of the

outputs y for a fixed X, is given by
w = (XTX)"1xXTy

iy

e We need to understand how W varies in relation to w* when
the outputs are generated according to

y=Xw"+te, e~ N(0,0°T)
e In the absence of noise e, the ML estimator would recover
w* exactly (with only minor constraints on X):
w = (XTX)"IXT(Xw*)
XTX)1(XTX)w*

= wr
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S ML estimator and noise

e In the presence of noise we can still use the fact that
y = Xw™* + e to simplify the parameter estimates

w = (XTX)"XTy

XTX)1XT(Xw* + e)

= (XTX)'(XTX)w* + (XTX)"1XTe
w* + (XTX)"'XTe

So the ML estimate is the correct parameter vector plus an
estimate based purely on noise.

Tommi Jaakkola, MIT CSAIL 12




T ML estimator
e Since the ML estimator

w = w4+ (XTX)'XTe

S ML estimator: mean

e Since the noise is zero mean by assumption, our parameter
estimator is unbiased.

N _ * T —1~T
is a linear function of normally distributed noise e, it is also E{w[X} = w'+ E{(X'X)"'X"e[X}
normally distributed. = w'+ (XTX)'XTE {e|X}
e To fully characterize its distribution, given X, we only need = w*+(XTX)"'xTo
to evaluate its S
mean
e = E{w|X}
and covariance
Cow = B{(W — piw) (W — )" X}
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oA ML estimator: covariance oA ML estimator: summary

e We will again use the decomposition

w=w"+(X"X)"'X"e
and the fact that the mean is w*, and get
E { (W —w*)(w — w*)T \X}

B{ [(X"X)"'X"e] [(X"X)'X"e]" X}

E{[(X"X)"'X"e][e"X(X"X)™"] |X}

= [(X"X)'X"|E {ee” |X} [X(X"X)]

[(XTX)'XT] %1 [X(XTX) ]

= o’ [(XTX)IXTX(XTX) ]

o2 (XTX)!
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e When the assumptions in the polynomial regression model
are correct, the ML (least squares) estimator w, given X,
follows a simple Gaussian distribution:

W~ N(w*, o?(XTX)™!)
(the result naturally extends to any additive model)

e We can now study how the uncertainty (covariance) of this
estimator depends on the choice of input points or X
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Sosan Topics
e Parameter uncertainty
— regression model, underlying model
— mean and variance of the ML estimator

e Active learning
— measures of uncertainty
— selection criteria, algorithms
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oA Active learning
e The ability to guide the selection of training inputs can
substantially improve the accuracy of predictions when the
data is otherwise limited

— e.g., select specific documents to classify, faces to label,
cars to test for fuel efficiency, etc.

e In active learning we try to optimize the selection of
training inputs so as to maximally reduce model/prediction
uncertainty
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oA Active regression

e For any set of training inputs X the resulting uncertainty
about the parameters is characterized by the covariance
matrix 02(XTX) ™! of the Gaussian distribution

W~ N(w*, o?(XTX)™!)
Note that the covariance matrix does not depend on the
training outputs!

e We'd like to select input points, specify X, so as to minimize
any residual “uncertainty”; need to define exactly how to
measure uncertainty based on the covariance
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oA Parameter uncertainty

e Determinant of the covariance matrix is one possible measure
of uncertainty, capturing the “volume” of variation around
the mean.

e We can therefore find n inputs x4, ..., z,, which determine
the matrix X, so as to minimize the determinant of the
covariance matrix (0% only affects the overall scaling, not
the choice of points):

det [(X"X)7!]
e Note that since the covariance does not depend on the

training outputs, we can select the inputs either sequentially
or prior to seeing any outputs
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“can Determinant as a measure of “volume”
e Any covariance matrix has an eigen-decomposition:

C=R R”

2

Om

where the orthonormal rotation matrix R specifies the
principal axes of variation and each eigenvalue o? gives

the variance along one of the principal directions

e The “volume” of a Gaussian ,,
distribution is a function of only
02,i=1,...,m. Specifically N

m

“volume” o H o; = VdetC

=1 B
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Seean Determinant criterion: example
e 1st order polynomial regression within z € [—1, 1]

flz;w) = wo + wrz

e What are the first two points that would we select?
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Sosan Determinant criterion: example
e 1st order polynomial regression within z € [—1,1]

flzyw) = wo + wrz

e What are the first two points that would we select?

aet( (X))

87 02 o3 o4 o5
symmet

xr = 1, X9 = —1
(the two points have to be symmetric around zero)
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Sosan Determinant criterion: example
e 2nd order polynomial regression within = € [—1, 1]

f(z;w) = wo + w1z + woz?

What the first three points that we would select?
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Sosan Determinant criterion: example Tosan Sequential selection

e 2nd order polynomial regression within = € [—1,1] e The determinant criterion is based on the uncertainty in the

A ) 2 parameter values, not directly that of the predictions
T;W) = Wy + W1 + Wak
e We can devise a sequential selection criterion that aims to

What the first three points that we would select? minimize the variance of the predictions directly
e For example: the prediction at a new point x is
o8 T
N flz; W) = W+ iz = {L} w,
o3 with variance
02 -
o . 1 1
| = S— Var{fe%)} = | | Cow|
T = *1,$2 :O,l’g =1
11" 1
x x
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Tosan Sequential selection cont’d Tosan Sequential selection: example
e 2nd order polynomial regression within = € [—1, 1]
T
P . N A2
vartsoy = o [1] o[ 1] ) =+
x x
A priori selected inputs 1 = =1,z = 0,23 = 1.
— 02 only affects the overall scale (set to 1 from hereafter) - T
— the variance is a function of both the query point = and 1 . . 1
the past inputs or X Var{f(z;w)} = | = (X'X) x
x? x?
e Assuming the input points are contained within, e.g., an L
interval X', we can select the next input to be the point of 1 @ a?
most uncertain prediction: where X = 1 @y a3
" = argmax ¢ Var{ f(z; W) } )
rEX
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“CsalL Example cont’d “CsalL Sequential selection: properties
o o e In the linear/additive regression context the prediction
N iy variance is uniformly non-increasing
fod fod C = (X™X)™! covariance of W
L A = (XTX) inverse covariance
N N T T
05 0 05 05 0 05 1 1 1
Var{f(z;w)} = |z Clz |=|z=z A?
o4l 09| SL‘2 xz 332
N Foo It suffices to show that the eigenvalues of A can only increase
Los| 805 . . .
\/\/ (or remain the same) as a result of adding new inputs.
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“CsalL Brief derivation
Suppose we add any valid input 2/,

A 12/ 22717712 22
o X X

T
1 1
= XTX + | x
2 2
T
1 1
= A+ |2 b
12 12

In other words, we add to A a matrix whose eigenvalues are
all non-negative = eigenvalues of A are non-decreasing
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