6.867 Machine learning: lecture 4

Tommi S. Jaakkola MIT CSAIL
tommi@csail.mit.edu

Topics

- Parameter uncertainty
- regression model, underlying model
- mean and variance of the ML estimator
- Active learning
- measures of uncertainty
- selection criteria, algorithms

Polynomial regression

- Consider again a simple $m^{\text {th }}$ degree polynomial regression model

$$
y=w_{0}+w_{1} x+\ldots+w_{m} x^{m}+\epsilon, \epsilon \sim N\left(0, \sigma^{2}\right)
$$

where σ^{2} is assumed fixed (known).

Polynomial regression

- Consider again a simple $m^{t h}$ degree polynomial regression model

$$
y=w_{0}+w_{1} x+\ldots+w_{m} x^{m}+\epsilon, \quad \epsilon \sim N\left(0, \sigma^{2}\right)
$$

where σ^{2} is assumed fixed (known).

- In this model the outputs $\left\{y_{1}, \ldots, y_{n}\right\}$ corresponding to any inputs $\left\{x_{1}, \ldots, x_{n}\right\}$ are generated according to
$\mathbf{y}=\mathbf{X w}+\mathbf{e}$, where
$\mathbf{y}=\left[\begin{array}{c}y_{1} \\ \cdots \\ y_{n}\end{array}\right], \quad \mathbf{X}=\left[\begin{array}{cccc}1 & x_{1} & \ldots & x_{1}^{m} \\ \cdots & \ldots & \ldots & \\ 1 & x_{n} & \ldots & x_{n}^{m}\end{array}\right], \quad \mathbf{e}=\left[\begin{array}{c}\epsilon_{1} \\ \cdots \\ \epsilon_{n}\end{array}\right]$
and $\epsilon_{i} \sim N\left(0, \sigma^{2}\right), i=1, \ldots, n$.

Models and accuracy

- We are interested in studying how the choice of inputs $\left\{x_{1}, \ldots, x_{n}\right\}$ or, equivalently, \mathbf{X}, affects the accuracy of our regression model

Models and accuracy

- We are interested in studying how the choice of inputs $\left\{x_{1}, \ldots, x_{n}\right\}$ or, equivalently, \mathbf{X}, affects the accuracy of our regression model
- Our model for the outputs $\mathbf{y}=\left\{y_{1}, \ldots, y_{n}\right\}$ given \mathbf{X} is

$$
\mathbf{y}=\mathbf{X} \mathbf{w}+\mathbf{e}, \quad \mathbf{e} \sim N\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)
$$

Models and accuracy

- We are interested in studying how the choice of inputs $\left\{x_{1}, \ldots, x_{n}\right\}$ or, equivalently, \mathbf{X}, affects the accuracy of our regression model
- Our model for the outputs $\mathbf{y}=\left\{y_{1}, \ldots, y_{n}\right\}$ given \mathbf{X} is

$$
\mathbf{y}=\mathbf{X} \mathbf{w}+\mathbf{e}, \quad \mathbf{e} \sim N\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)
$$

- We assume also that the training outputs are actually generated by a model in this class with some fixed but unknown parameters \mathbf{w}^{*} (same σ^{2}):

$$
\mathbf{y}=\mathbf{X} \mathbf{w}^{*}+\mathbf{e}, \quad \mathbf{e} \sim N\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)
$$

Models and accuracy

- We are interested in studying how the choice of inputs $\left\{x_{1}, \ldots, x_{n}\right\}$ or, equivalently, \mathbf{X}, affects the accuracy of our regression model
- Our model for the outputs $\mathbf{y}=\left\{y_{1}, \ldots, y_{n}\right\}$ given \mathbf{X} is

$$
\mathbf{y}=\mathbf{X} \mathbf{w}+\mathbf{e}, \quad \mathbf{e} \sim N\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)
$$

- We assume also that the training outputs are actually generated by a model in this class with some fixed but unknown parameters \mathbf{w}^{*} (same σ^{2}):

$$
\mathbf{y}=\mathbf{X} \mathbf{w}^{*}+\mathbf{e}, \quad \mathbf{e} \sim N\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)
$$

- We can now ask, for a given X, how accurately we are able to recover the "true" parameters w*

ML estimator, uncertainty

- The ML estimator $\hat{\mathbf{w}}$, viewed here as a function of the outputs \mathbf{y} for a fixed \mathbf{X}, is given by

$$
\hat{\mathbf{w}}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}
$$

ML estimator, uncertainty

- The ML estimator $\hat{\mathbf{w}}$, viewed here as a function of the outputs \mathbf{y} for a fixed \mathbf{X}, is given by

$$
\hat{\mathbf{w}}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}
$$

- We need to understand how $\hat{\mathbf{w}}$ varies in relation to \mathbf{w}^{*} when the outputs are generated according to

$$
\mathbf{y}=\mathbf{X} \mathbf{w}^{*}+\mathbf{e}, \quad \mathbf{e} \sim N\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)
$$

ML estimator, uncertainty

- The ML estimator $\hat{\mathbf{w}}$, viewed here as a function of the outputs \mathbf{y} for a fixed \mathbf{X}, is given by

$$
\hat{\mathbf{w}}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}
$$

- We need to understand how $\hat{\mathbf{w}}$ varies in relation to \mathbf{w}^{*} when the outputs are generated according to

$$
\mathbf{y}=\mathbf{X} \mathbf{w}^{*}+\mathbf{e}, \quad \mathbf{e} \sim N\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)
$$

- In the absence of noise \mathbf{e}, the ML estimator would recover \mathbf{w}^{*} exactly (with only minor constraints on \mathbf{X}):

$$
\begin{aligned}
\hat{\mathbf{w}} & =\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T}\left(\mathbf{X} \mathbf{w}^{*}\right) \\
& =\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}\left(\mathbf{X}^{T} \mathbf{X}\right) \mathbf{w}^{*} \\
& =\mathbf{w}^{*}
\end{aligned}
$$

ML estimator and noise

- In the presence of noise we can still use the fact that $\mathbf{y}=\mathbf{X} \mathbf{w}^{*}+\mathbf{e}$ to simplify the parameter estimates

$$
\begin{aligned}
\hat{\mathbf{w}} & =\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y} \\
& =\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T}\left(\mathbf{X} \mathbf{w}^{*}+\mathbf{e}\right) \\
& =\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}\left(\mathbf{X}^{T} \mathbf{X}\right) \mathbf{w}^{*}+\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{e} \\
& =\mathbf{w}^{*}+\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{e}
\end{aligned}
$$

So the ML estimate is the correct parameter vector plus an estimate based purely on noise.

ML estimator

- Since the ML estimator

$$
\hat{\mathbf{w}}=\mathbf{w}^{*}+\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{e}
$$

is a linear function of normally distributed noise \mathbf{e}, it is also normally distributed.

- To fully characterize its distribution, given \mathbf{X}, we only need to evaluate its
mean

$$
\mu_{\hat{\mathbf{w}}}=E\{\hat{\mathbf{w}} \mid \mathbf{X}\}
$$

and covariance

$$
C_{\hat{\mathbf{w}}, \hat{\mathbf{w}}}=E\left\{\left(\hat{\mathbf{w}}-\mu_{\hat{\mathbf{w}}}\right)\left(\hat{\mathbf{w}}-\mu_{\hat{\mathbf{w}}}\right)^{T} \mid \mathbf{X}\right\}
$$

ML estimator: mean

- Since the noise is zero mean by assumption, our parameter estimator is unbiased:

$$
\begin{aligned}
E\{\hat{\mathbf{w}} \mid \mathbf{X}\} & =\mathbf{w}^{*}+E\left\{\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{e} \mid \mathbf{X}\right\} \\
& =\mathbf{w}^{*}+\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} E\{\mathbf{e} \mid \mathbf{X}\} \\
& =\mathbf{w}^{*}+\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{0} \\
& =\mathbf{w}^{*}
\end{aligned}
$$

ML estimator: covariance

- We will again use the decomposition

$$
\hat{\mathbf{w}}=\mathbf{w}^{*}+\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{e}
$$

and the fact that the mean is \mathbf{w}^{*}, and get

$$
\begin{aligned}
E & \left\{\left(\hat{\mathbf{w}}-\mathbf{w}^{*}\right)\left(\hat{\mathbf{w}}-\mathbf{w}^{*}\right)^{T} \mid \mathbf{X}\right\} \\
& =E\left\{\left[\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{e}\right]\left[\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{e}\right]^{T} \mid \mathbf{X}\right\} \\
& =E\left\{\left[\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{e}\right]\left[\mathbf{e}^{T} \mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}\right] \mid \mathbf{X}\right\} \\
& =\left[\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T}\right] E\left\{\mathbf{e e}^{T} \mid \mathbf{X}\right\}\left[\mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}\right] \\
& =\left[\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T}\right] \sigma^{2} \mathbf{I}\left[\mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}\right] \\
& =\sigma^{2}\left[\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}\right] \\
& =\sigma^{2}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}
\end{aligned}
$$

ML estimator: summary

- When the assumptions in the polynomial regression model are correct, the ML (least squares) estimator $\hat{\mathbf{w}}$, given \mathbf{X}, follows a simple Gaussian distribution:

$$
\hat{\mathbf{w}} \sim N\left(\mathbf{w}^{*}, \sigma^{2}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}\right)
$$

(the result naturally extends to any additive model)

- We can now study how the uncertainty (covariance) of this estimator depends on the choice of input points or \mathbf{X}

Topics

- Parameter uncertainty
- regression model, underlying model
- mean and variance of the ML estimator
- Active learning
- measures of uncertainty
- selection criteria, algorithms

Active learning

- The ability to guide the selection of training inputs can substantially improve the accuracy of predictions when the data is otherwise limited
- e.g., select specific documents to classify, faces to label, cars to test for fuel efficiency, etc.
- In active learning we try to optimize the selection of training inputs so as to maximally reduce model/prediction uncertainty

Active regression

- For any set of training inputs \mathbf{X} the resulting uncertainty about the parameters is characterized by the covariance matrix $\sigma^{2}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}$ of the Gaussian distribution

$$
\hat{\mathbf{w}} \sim N\left(\mathbf{w}^{*}, \sigma^{2}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}\right)
$$

Note that the covariance matrix does not depend on the training outputs!

- We'd like to select input points, specify \mathbf{X}, so as to minimize any residual "uncertainty"; need to define exactly how to measure uncertainty based on the covariance

Parameter uncertainty

- Determinant of the covariance matrix is one possible measure of uncertainty, capturing the "volume" of variation around the mean.
- We can therefore find n inputs x_{1}, \ldots, x_{n}, which determine the matrix \mathbf{X}, so as to minimize the determinant of the covariance matrix (σ^{2} only affects the overall scaling, not the choice of points):

$$
\operatorname{det}\left[\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}\right]
$$

- Note that since the covariance does not depend on the training outputs, we can select the inputs either sequentially or prior to seeing any outputs

Determinant as a measure of "volume"

- Any covariance matrix has an eigen-decomposition:

$$
\mathbf{C}=\mathbf{R}\left[\begin{array}{lll}
\sigma_{1}^{2} & & \\
& \ldots & \\
& & \sigma_{m}^{2}
\end{array}\right] \mathbf{R}^{T}
$$

where the orthonormal rotation matrix \mathbf{R} specifies the principal axes of variation and each eigenvalue σ_{i}^{2} gives the variance along one of the principal directions

- The "volume" of a Gaussian distribution is a function of only $\sigma_{i}^{2}, i=1, \ldots, m$. Specifically
"volume" $\propto \prod_{i=1}^{m} \sigma_{i}=\sqrt{\operatorname{det} C}$

Determinant criterion: example

- 1st order polynomial regression within $x \in[-1,1]$

$$
f(x ; \mathbf{w})=w_{0}+w_{1} x
$$

- What are the first two points that would we select?

Determinant criterion: example

- 1st order polynomial regression within $x \in[-1,1]$

$$
f(x ; \mathbf{w})=w_{0}+w_{1} x
$$

- What are the first two points that would we select?

(the two points have to be symmetric around zero)

Determinant criterion: example

- 2nd order polynomial regression within $x \in[-1,1]$

$$
f(x ; \mathbf{w})=w_{0}+w_{1} x+w_{2} x^{2}
$$

What the first three points that we would select?

Determinant criterion: example

- 2nd order polynomial regression within $x \in[-1,1]$

$$
f(x ; \mathbf{w})=w_{0}+w_{1} x+w_{2} x^{2}
$$

What the first three points that we would select?

Sequential selection

- The determinant criterion is based on the uncertainty in the parameter values, not directly that of the predictions
- We can devise a sequential selection criterion that aims to minimize the variance of the predictions directly
- For example: the prediction at a new point x is

$$
f(x ; \hat{\mathbf{w}})=\hat{w}_{0}+\hat{w}_{1} x=\left[\begin{array}{l}
1 \\
x
\end{array}\right]^{T} \hat{\mathbf{w}}
$$

with variance

$$
\begin{aligned}
\operatorname{Var}\{f(x ; \hat{\mathbf{w}})\} & =\left[\begin{array}{l}
1 \\
x
\end{array}\right]^{T} C_{\hat{\mathbf{w}}, \hat{\mathbf{w}}}\left[\begin{array}{l}
1 \\
x
\end{array}\right] \\
& =\sigma^{2}\left[\begin{array}{l}
1 \\
x
\end{array}\right]^{T}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}\left[\begin{array}{l}
1 \\
x
\end{array}\right]
\end{aligned}
$$

Sequential selection cont'd

$$
\operatorname{Var}\{f(x ; \hat{\mathbf{w}})\}=\sigma^{2}\left[\begin{array}{l}
1 \\
x
\end{array}\right]^{T}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}\left[\begin{array}{l}
1 \\
x
\end{array}\right]
$$

- σ^{2} only affects the overall scale (set to 1 from hereafter)
- the variance is a function of both the query point x and the past inputs or \mathbf{X}
- Assuming the input points are contained within, e.g., an interval \mathcal{X}, we can select the next input to be the point of most uncertain prediction:

$$
x^{n e w}=\underset{x \in \mathcal{X}}{\arg \max }\{\operatorname{Var}\{f(x ; \hat{\mathbf{w}})\}\}
$$

Sequential selection: example

- 2nd order polynomial regression within $x \in[-1,1]$

$$
f(x ; \hat{\mathbf{w}})=\hat{w}_{0}+\hat{w}_{1} x+\hat{w}_{2} x^{2}
$$

A priori selected inputs $x_{1}=-1, x_{2}=0, x_{3}=1$.

$$
\begin{aligned}
\operatorname{Var}\{f(x ; \hat{\mathbf{w}})\} & =\left[\begin{array}{l}
1 \\
x \\
x^{2}
\end{array}\right]^{T}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}\left[\begin{array}{l}
1 \\
x \\
x^{2}
\end{array}\right] \\
\text { where } \mathbf{X} & =\left[\begin{array}{rrr}
1 & x_{1} & x_{1}^{2} \\
1 & x_{2} & x_{2}^{2} \\
\cdots & \cdots & \cdots
\end{array}\right]
\end{aligned}
$$

Example cont'd

Sequential selection: properties

- In the linear/additive regression context the prediction variance is uniformly non-increasing

$$
\begin{aligned}
\mathbf{C} & =\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \quad \text { covariance of } \hat{\mathbf{w}} \\
\mathbf{A} & =\left(\mathbf{X}^{T} \mathbf{X}\right) \text { inverse covariance } \\
\operatorname{Var}\{f(x ; \hat{\mathbf{w}})\} & =\left[\begin{array}{l}
1 \\
x \\
x^{2}
\end{array}\right]^{T} \mathbf{C}\left[\begin{array}{l}
1 \\
x \\
x^{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
x \\
x^{2}
\end{array}\right]^{T} \mathbf{A}^{-1}\left[\begin{array}{l}
1 \\
x \\
x^{2}
\end{array}\right]
\end{aligned}
$$

It suffices to show that the eigenvalues of \mathbf{A} can only increase (or remain the same) as a result of adding new inputs.

Brief derivation

Suppose we add any valid input x^{\prime},

$$
\begin{aligned}
& \mathbf{A}^{\prime}=\left[\begin{array}{ll}
1 & x^{\prime} \\
x^{\prime 2} \\
\mathbf{X}
\end{array}\right]^{T}\left[\begin{array}{l}
1 x^{\prime} x^{\prime 2} \\
\mathbf{X}
\end{array}\right] \\
& =\mathbf{X}^{T} \mathbf{X}+\left[\begin{array}{l}
1 \\
x^{\prime} \\
x^{\prime 2}
\end{array}\right]\left[\begin{array}{l}
1 \\
x^{\prime} \\
x^{\prime 2}
\end{array}\right]^{T} \\
& =\mathbf{A}+\left[\begin{array}{l}
1 \\
x^{\prime} \\
x^{\prime 2}
\end{array}\right]\left[\begin{array}{l}
1 \\
x^{\prime} \\
x^{\prime 2}
\end{array}\right]^{T}
\end{aligned}
$$

In other words, we add to \mathbf{A} a matrix whose eigenvalues are all non-negative \Rightarrow eigenvalues of \mathbf{A} are non-decreasing

