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CsAIL Topics
e Classification and regression
— regression approach to classification
— Fisher linear discriminant
— elementary decision theory

e Logistic regression
— model, rationale
— estimation, stochastic gradient
— additive extension
— generalization
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CsalL Classification
Example: digit recognition (8x8 binary digits)

binary digit actual label target label in learning
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CsalL Classification via regression
e Suppose we ignore the fact that the target output y is binary
(e.g., 0/1) rather than a continuous variable

e So we will estimate a linear regression function
fxsw) = wo+wizy + ...+ wazy
= wo+x Wy,
based on the available data as before.

e Assuming y = f(x;w) + ¢, ¢ ~ N(0,02), then the ML

“1” 0 objective for the parameters w reduces to least squares
fitting:
1 n
g X 5
1 0 Jn(w) = EZ (yi — f(xi;w))
i=1
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CsalL Classification via regression cont’d CsalL Classification via regression cont’d

e We can use the resulting regression function

f(x; W) = wo + xT Wy,

to classify any new (test) example x according to

label = 1if f(x;w) > 0.5, and label = 0 otherwise

e f(x;w) = 0.5 therefore defines a linear decision boundary
that partitions the input space into two class specific regions
(half spaces)
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e Given the dissociation between the objective (classification)
and the estimation criterion (regression) it is not clear that
this approach leads to sensible results

sometimes good sometimes bad
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“CsAlL Linear regression and projections
o A linear regression function (here in 2D)

fx;w) = wo + xTwy
projects each point x = [z1 22]T to a line parallel to w;.

point in R¢ projected point in R

X1 zZ1 = X{Wl
X2 Z9 = ngl
X, 20 = XEwy
e We can study how well the projected points {z1,...,2,},

viewed as functions of w, are separated across the classes.
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“CsAlL Linear regression and projections
o A linear regression function (here in 2D)

fx;w) = wo + xTwy

projects each point x = [z1 22]T to a line parallel to w;.

w1

e We can study how well the projected points {z1,...,2,},
viewed as functions of w1, are separated across the classes.
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“CsAlL Projection and classification

e By varying w; we get different levels of separation between
the projected points
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“Csan Optimizing the projection
e We would like to find w; that somehow maximizes the
separation of the projected points across classes
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e We can quantify the separation (overlap) in terms of
means and variances of the resulting 1-dimensional class
distributions
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“csaie Fisher linear discriminant: preliminaries
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e Class descriptions in R%:
class 0: mg samples, mean pg, covariance ¥
class 1: my samples, mean pq, covariance 3

e Projected class descriptions in R:
class 0: ng samples, mean ul'wi, variance wiXowy
class 1: n; samples, mean uf'wy, variance wl ¥, w,
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A Fisher linear discriminant

e Estimation criterion: we find wy that maximizes

(Separation of projected means)?

JF' sher (W L :
isher(W) Sum of within class variances

T T 2
(1 W1 — pg w)
nlwlewl + ’I’L(]W?E()Wl

e The solution (class separation)
Wi o< (N2 + noZo) " (1 — o)

is decision theoretically optimal
for two normal populations with
equal covariances (X; = %)

bbb Lo oy
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oA Background: simple decision theory

e Suppose we know the class-conditional densities p(x|y) for
y = 0,1 as well as the overall class frequencies P(y).

How do we decide which class a new example x’ belongs to
so as to minimize the overall probability of error?

class 1 density
Plxly=1)

P(xly=0)
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Ba, Background: simple decision theory

e Suppose we know the class-conditional densities p(x|y) for
y = 0,1 as well as the overall class frequencies P(y).

How do we decide which class a new example x’ belongs to
so as to minimize the overall probability of error?

The minimum probability of

s 1 densy error decisions are given by

Plxly=1)

class 0 densit

P(xly=0) /

y = arg;rzl%%{p(qu)P(y)}

— argmax{ P(ylx) }
y=0,1
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“CsAlL Logistic regression
e The optimal decisions are based on the posterior class
probabilities P(y|x). For binary classification problems, we
can write these decisions as

“CsAlL Logistic regression
e The optimal decisions are based on the posterior class
probabilities P(y|x). For binary classification problems, we
can write these decisions as

- Ply = 1]x) - Ply = 1]x)
y=1if log——F=<>0 y=1if log——F=<>0
Py = 0[x) Py =0[x)
and y = 0 otherwise. and y = 0 otherwise.
e We generally don't know P(y|x) but we can parameterize
the possible decisions according to
Py =1]x) T
log———= = f(x;w) = wp + x" Wy
Py =0[x)
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Sean Logistic regression cont’d Sean Logistic regression: decisions
e Our log-odds model o Logistic regression models imply a linear decision boundary
Py =1Jx) T P(y = 1[x)
log 57=———= = wo +x" W log =4 — - _ xTw; =0
Ply = 0}x) BPy=op) ™
gives rise to a specific form for the conditional probability
over the labels (the logistic model):
Py =1lx,w) = g (wo +x"w1)
where 09
9(z) = (1 + exp(—2)) ™" }?
is a logistic  “squashing
function” that turns linear
predictions into probabilities " P
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Sean Logistic regression: decisions
o Logistic regression models imply a linear decision boundary
Ply=1
log (v 1) =wo+xTw; =0

P(y = 0[x)

class 1

class 0
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oA Fitting logistic regression models

e As with the linear regression models we can fit the logistic
models using the maximum (conditional) log-likelihood
criterion

n
UD;w) = log P(yifx;, w)
=1

where

Py =1|x,w) = g (wo+x"w1)

e The log-likelihood function [(D;w) is a jointly concave
function of the parameters w; a number of optimization
techniques are available for finding the maximizing
parameters
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“CsAlL About the ML solution

o If we set the derivatives of the log-likelihood with respect to
the parameters to zero

n

1o}

Twol(D;w) = ;(yi—P(yiil\XmW)) =0
a n

FolDiw) = > (v — Plyi = 1xi, w))ai; = 0
Wi i=1

the optimality conditions again require that the prediction
errors

&= (yi— Plyi=1xi,w)), i=1....n
corresponding to the optimal setting of the parameters are

uncorrelated with any linear function of the inputs.
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“CsalL Stochastic gradient ascent
e We can try to maximize the log-likelihood in an on-line or
incremental fashion.
Given each training input x; and the binary (0/1) label y;,
we can change the parameters w slightly to increase the
corresponding log-probability

W w+n6iwlogP(y1;|xi,w)

= w+n (¥ — Py = 1lx;, w)) Ll(z}

prediction error
where 7 is the learning rate.

e The resulting update is similar to the mistake driven
algorithm discussed earlier; examples that are already
confidently classified do not lead to any significant updates
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Tesan Stochastic gradient ascent cont’d

e To understand the procedure graphically we focus on a single
example and omit the bias term wy

w — w+n (y;— Py = 1x;,w)) x;

prediction error

n(1— Py =1]x,w))x

Wnew
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2 Gradient ascent of the log-likelihood

e We can also perform gradient ascent steps on the log-
likelihood of all the training labels given examples at the
same time. In other words,

W w+77%l(D;w)
- 1
= W+772(yi—P(yz‘:1|Xi7W)) {x}
i=1 v

Still need to figure out a way to set the learning rate to
guarantee convergence.
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Fsan Setting the learning rate: Armijo rule

estimated

The learning rate in actnal

W— W +778%l(D;w)

“should” satisfy

Wgew
0 1,0
19w ngt(Dw) ) = D) = - G D )P

The Armijo rule suggests finding the smallest integer m such
that n = noq™, ¢ < 1 is a valid choice in this sense.

e Armijo rule is guaranteed to converge to a (local) maximum
under certain technical assumptions
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Eosan Additive models and classification
e Similarly to linear regression models, we can extend the
logistic regression models to additive (logistic) models

Py = 1|x,w) = g (wo + w191(X) + . . . Winprm(x) )

e As before we are free to choose the basis functions ¢;(x)
to capture relevant properties of any specific classification
problem

e Since we also over-fit easily, we can use leave-one-out cross-
validation (in terms of log-likelihood or classification error)
to estimate the generalization performance

1 .
V log-likelihood = — » log P(y;|x;, w ™"
CV log-likelihoo nZog (yi|xi, Ww™")

i=1
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Esan Logistic regression example
e Simple binary classification problem in R?

Ryl
Esan Logistic regression example
e Simple binary classification problem in R?

-

linear
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Esan Logistic regression example Esan Logistic regression example
e Simple binary classification problem in R? e Simple binary classification problem in R?

linear quadratic
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linear quadratic
CV = —-0.202
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