Topics

• Support vector machines
 – separable case, formulation, margin
 – non-separable case, penalties, and logistic regression
 – dual solution, kernels
 – examples, properties
Support vector machine (SVM)

• When the training examples are *linearly separable* we can maximize a geometric notion of margin (distance to the boundary) by minimizing the regularization penalty

\[\| \mathbf{w}_1 \|^2 / 2 = \sum_{i=1}^{d} w_i^2 / 2 \]

subject to the classification constraints

\[y_i [w_0 + \mathbf{x}_i^T \mathbf{w}_1] - 1 \geq 0 \]

for \(i = 1, \ldots, n \).

• The solution is defined only on the basis of a subset of examples or “support vectors”
SVM: separable case

- We minimize \(\| \mathbf{w}_1 \|^2 / 2 = \sum_{i=1}^{d} w_i^2 / 2 \) subject to
 \[
y_i \left[w_0 + \mathbf{x}_i^T \mathbf{w}_1 \right] - 1 \geq 0, \quad i = 1, \ldots, n
 \]

 margin = \(1 / \| \hat{\mathbf{w}}_1 \| \)

- The resulting margin and the “slope” \(\| \hat{\mathbf{w}}_1 \| \) are inversely related
SVM: non-separable case

- When the examples are not linearly separable we can modify the optimization problem slightly to add a penalty for violating the classification constraints:

We minimize

$$\|w_1\|^2/2 + C \sum_{i=1}^{n} \xi_i$$

subject to relaxed classification constraints

$$y_i [w_0 + x_i^T w_1] - 1 + \xi_i \geq 0,$$

for $i = 1, \ldots, n$. Here $\xi_i \geq 0$ are called “slack” variables.
We can also write the SVM optimization problem more compactly as

\[
C \sum_{i=1}^{n} \xi_i \left(1 - y_i [w_0 + x_i^T w_1] \right) + ||w_1||^2 / 2
\]

where \((z)^+ = z\) if \(z \geq 0\) and zero otherwise (i.e., returns the positive part).
SVM: non-separable case cont’d

• We can also write the SVM optimization problem more compactly as

\[
C \sum_{i=1}^{n} \left(1 - y_i \left[w_0 + x_i^T w_1 \right] \right)^+ + \| w_1 \|^2 / 2
\]

where \((z)^+ = z\) if \(z \geq 0\) and zero otherwise (i.e., returns the positive part).

• This is equivalent to regularized empirical loss minimization

\[
\frac{1}{n} \sum_{i=1}^{n} \left(1 - y_i \left[w_0 + x_i^T w_1 \right] \right)^+ + \lambda \| w_1 \|^2 / 2
\]

where \(\lambda = 1/nC\) is the regularization parameter.
SVM vs logistic regression

- When viewed from the point of view of regularized empirical loss minimization, SVM and logistic regression appear quite similar:

SVM:
\[
\frac{1}{n} \sum_{i=1}^{n} \left(1 - y_i \left[w_0 + x_i^T w_1\right]\right)^+ + \lambda \|w_1\|^2 / 2
\]

Logistic:
\[
\frac{1}{n} \sum_{i=1}^{n} -\log P(y_i|x,w) + \lambda \|w_1\|^2 / 2
\]

where \(g(z) = (1 + \exp(-z))^{-1} \) is the logistic function.

(Note that we have transformed the problem maximizing the penalized log-likelihood into minimizing negative penalized log-likelihood.)
The difference comes from how we penalize “errors”:

Both: \[\frac{1}{n} \sum_{i=1}^{n} \text{Loss} \left(y_i \left[w_0 + x_i^T w_1 \right] \right) + \lambda \| w_1 \|^2 / 2 \]

- **SVM:**
 \[\text{Loss}(z) = (1 - z)^+ \]

- **Regularized logistic reg:**
 \[\text{Loss}(z) = \log(1 + \exp(-z)) \]
SVM: solution, Lagrange multipliers

- Back to the separable case: how do we solve

\[
\min \frac{||w_1||^2}{2} \text{ subject to } y_i \left[w_0 + x_i^T w_1 \right] - 1 \geq 0, \quad i = 1, \ldots, n
\]
SVM: solution, Lagrange multipliers

- Back to the separable case: how do we solve

\[
\min \|w_1\|^2/2 \quad \text{subject to} \quad y_i [w_0 + x_i^T w_1] - 1 \geq 0, \quad i = 1, \ldots, n
\]

- Let start by representing the constraints as losses

\[
\max_{\alpha \geq 0} \alpha \left(1 - y_i [w_0 + x_i^T w_1] \right) = \begin{cases}
0, & y_i [w_0 + x_i^T w_1] - 1 \geq 0 \\
\infty, & \text{otherwise}
\end{cases}
\]
SVM: solution, Lagrange multipliers

- Back to the separable case: how do we solve

$$\min \|w_1\|^2/2 \quad \text{subject to}$$

$$y_i [w_0 + x_i^T w_1] - 1 \geq 0, \quad i = 1, \ldots, n$$

- Let start by representing the constraints as losses

$$\max_{\alpha \geq 0} \alpha (1 - y_i [w_0 + x_i^T w_1]) = \begin{cases} 0, & y_i [w_0 + x_i^T w_1] - 1 \geq 0 \\ \infty, & \text{otherwise} \end{cases}$$

and rewrite the minimization problem in terms of these

$$\min_w \left\{ \|w_1\|^2/2 + \sum_{i=1}^{n} \max_{\alpha_i \geq 0} \alpha_i (1 - y_i [w_0 + x_i^T w_1]) \right\}$$
SVM: solution, Lagrange multipliers

- Back to the separable case: how do we solve

$$\min \|w_1\|^2/2 \text{ subject to } y_i [w_0 + x_i^T w_1] - 1 \geq 0, \quad i = 1, \ldots, n$$

- Let start by representing the constraints as losses

$$\max_{\alpha \geq 0} \alpha (1 - y_i [w_0 + x_i^T w_1]) = \begin{cases} 0, & y_i [w_0 + x_i^T w_1] - 1 \geq 0 \\ \infty, & \text{otherwise} \end{cases}$$

and rewrite the minimization problem in terms of these

$$\min_w \left\{ \|w_1\|^2/2 + \sum_{i=1}^{n} \max_{\alpha_i \geq 0} \alpha_i (1 - y_i [w_0 + x_i^T w_1]) \right\}$$

$$= \min_w \max_{\{\alpha_i \geq 0\}} \left\{ \|w_1\|^2/2 + \sum_{i=1}^{n} \alpha_i (1 - y_i [w_0 + x_i^T w_1]) \right\}$$
SVM solution cont’d

- We can then swap 'max' and 'min':

\[
\min_{\mathbf{w}} \max_{\{\alpha_i \geq 0\}} \left\{ \|\mathbf{w}_1\|^2/2 + \sum_{i=1}^{n} \alpha_i (1 - y_i [w_0 + \mathbf{x}_i^T \mathbf{w}_1]) \right\}
\]

? \[= \max_{\{\alpha_i \geq 0\}} \min_{\mathbf{w}} \left\{ \|\mathbf{w}_1\|^2/2 + \sum_{i=1}^{n} \alpha_i (1 - y_i [w_0 + \mathbf{x}_i^T \mathbf{w}_1]) \right\}
\]

\[\underbrace{J(\mathbf{w};\alpha)}_{J(\mathbf{w};\alpha)}\]

As a result we have to be able to minimize \(J(\mathbf{w};\alpha)\) with respect to parameters \(\mathbf{w}\) for any fixed setting of the Lagrange multipliers \(\alpha_i \geq 0\).
SVM solution cont’d

- We can then swap ‘max’ and ‘min’:

\[
\min_{\mathbf{w}} \max_{\{\alpha_i \geq 0\}} \left\{ \|\mathbf{w}_1\|^2/2 + \sum_{i=1}^{n} \alpha_i (1 - y_i \left[w_0 + \mathbf{x}_i^T \mathbf{w}_1 \right]) \right\}
\]

\[= \max_{\{\alpha_i \geq 0\}} \min_{\mathbf{w}} \left\{ \|\mathbf{w}_1\|^2/2 + \sum_{i=1}^{n} \alpha_i (1 - y_i \left[w_0 + \mathbf{x}_i^T \mathbf{w}_1 \right]) \right\}
\]

\[\downarrow J(\mathbf{w}; \alpha)\]

We can find the optimal \(\hat{\mathbf{w}} \) as a function of \(\{\alpha_i\} \) by setting the derivatives to zero:

\[
\frac{\partial}{\partial \mathbf{w}_1} J(\mathbf{w}; \alpha) = \mathbf{w}_1 - \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i = 0
\]

\[
\frac{\partial}{\partial w_0} J(\mathbf{w}; \alpha) = - \sum_{i=1}^{n} \alpha_i y_i = 0
\]
SVM solution cont’d

- We can then substitute the solution

\[
\frac{\partial}{\partial w_1} J(w; \alpha) = w_1 - \sum_{i=1}^{n} \alpha_i y_i x_i = 0
\]

\[
\frac{\partial}{\partial w_0} J(w; \alpha) = - \sum_{i=1}^{n} \alpha_i y_i = 0
\]

back into the objective and get (after some algebra):

\[
\max_{\alpha_i \geq 0, \sum_i \alpha_i y_i = 0} \left\{ \|\hat{w}_1\|^2/2 + \sum_{i=1}^{n} \alpha_i (1 - y_i [\hat{w}_0 + x_i^T \hat{w}_1]) \right\}
\]

\[
= \max_{\alpha_i \geq 0, \sum_i \alpha_i y_i = 0} \left\{ \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} y_i y_j \alpha_i \alpha_j (x_i^T x_j) \right\}
\]
SVM solution: summary

- We can find the optimal setting of the Lagrange multipliers α_i by maximizing

$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} y_i y_j \alpha_i \alpha_j (x_i^T x_j)$$

subject to $\alpha_i \geq 0$ and $\sum_i \alpha_i y_i = 0$. Only α_i's corresponding to “support vectors” will be non-zero.
SVM solution: summary

• We can find the optimal setting of the Lagrange multipliers α_i by maximizing

$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} y_i y_j \alpha_i \alpha_j (x_i^T x_j)$$

subject to $\alpha_i \geq 0$ and $\sum_i \alpha_i y_i = 0$. Only α_i’s corresponding to “support vectors” will be non-zero.

• We can make predictions on any new example x according to the sign of the discriminant function

$$\hat{w}_0 + x^T \hat{w}_1$$
SVM solution: summary

• We can find the optimal setting of the Lagrange multipliers α_i by maximizing

$$
\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} y_i y_j \alpha_i \alpha_j (x_i^T x_j)
$$

subject to $\alpha_i \geq 0$ and $\sum_i \alpha_i y_i = 0$. Only α_i's corresponding to “support vectors” will be non-zero.

• We can make predictions on any new example x according to the sign of the discriminant function

$$
\hat{w}_0 + x^T \hat{w}_1 = \hat{w}_0 + x^T \left(\sum_{i=1}^{n} \hat{\alpha}_i y_i x_i \right)
$$
SVM solution: summary

- We can find the optimal setting of the Lagrange multipliers α_i by maximizing

$$
\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} y_i y_j \alpha_i \alpha_j (x_i^T x_j)
$$

subject to $\alpha_i \geq 0$ and $\sum_i \alpha_i y_i = 0$. Only α_i's corresponding to “support vectors” will be non-zero.

- We can make predictions on any new example x according to the sign of the discriminant function

$$
\hat{w}_0 + x^T \hat{w}_1 = \hat{w}_0 + x^T \left(\sum_{i=1}^{n} \hat{\alpha}_i y_i x_i \right) = \hat{w}_0 + \sum_{i \in SV} \hat{\alpha}_i y_i (x^T x_i)
$$
Non-linear classifier

- So far our classifier can make only linear separations.
- As with linear regression and logistic regression models, we can easily obtain a non-linear classifier by first mapping our examples $\mathbf{x} = [x_1, x_2]$ into longer feature vectors $\phi(\mathbf{x})$

$$
\phi(\mathbf{x}) = [x_1^2, x_2^2, \sqrt{2}x_1x_2, \sqrt{2}x_1, \sqrt{2}x_2, 1]
$$

and then applying the linear classifier to the new feature vectors $\phi(\mathbf{x})$.
Non-linear classifier

Linear separator in the feature ϕ-space

Non-linear separator in the original x-space
Feature mapping and kernels

- Let’s look at the previous example in a bit more detail

\[x \rightarrow \phi(x) = [x_1^2 \quad x_2^2 \quad \sqrt{2}x_1x_2 \quad \sqrt{2}x_1 \quad \sqrt{2}x_2 \quad 1] \]

- The SVM classifier deals only with inner products of examples (or feature vectors). In this example,

\[
\begin{align*}
\phi(x)^T \phi(x') & = x_1^2x_1'^2 + x_2^2x_2'^2 + 2x_1x_2x_1'x_2' + 2x_1x'_1 + 2x_2x'_2 + 1 \\
& = (1 + x_1x'_1 + x_2x'_2)^2 \\
& = (1 + (x^T x'))^2
\end{align*}
\]

so the inner products can be evaluated without ever explicitly constructing the feature vectors \(\phi(x) \)!

- \(K(x, x') = (1 + (x^T x'))^2 \) is a kernel function (inner product in the feature space)
Examples of kernel functions

• **Linear kernel**

\[K(x, x') = (x^T x') \]

• **Polynomial kernel**

\[K(x, x') = \left(1 + (x^T x')\right)^p \]

where \(p = 2, 3, \ldots \). To get the feature vectors we concatenate all up to \(p^{th} \) order polynomial terms of the components of \(x \) (weighted appropriately).

• **Radial basis kernel**

\[K(x, x') = \exp \left(-\frac{1}{2}||x - x'||^2\right) \]

In this case the feature space is infinite dimensional function space (use of the kernel results in a *non-parametric* classifier).
SVM examples

linear

2\text{nd} order polynomial

4\text{th} order polynomial

8\text{th} order polynomial