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Topics
• Feature selection

– motivation, examples
– information value, greedy selection, regularization

• Combination methods
– forward/backward fitting
– boosting
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Feature selection
• Suppose we consider only a finite collection of possible basis

functions, φi(x), i = 1, . . . ,m, such as the input components
φi(x) = xi.

• We try to find a small subset S of basis functions that are
sufficient to solve the (regression or) classification problem:

P (y = 1|x,w) = g
(
w0 +

k∑
i=1

wiφsi(x)
)

where the indexes S = {s1, . . . , sk} identify the selected
basis functions.
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Feature selection
• Suppose we consider only a finite collection of possible basis

functions, φi(x), i = 1, . . . ,m, such as the input components
φi(x) = xi.

• We try to find a small subset S of basis functions that are
sufficient to solve the (regression or) classification problem:

P (y = 1|x,w) = g
(
w0 +

k∑
i=1

wiφsi(x)
)

where the indexes S = {s1, . . . , sk} identify the selected
basis functions.

• There are many ways to find appropriate basis functions:
– information value
– greedy selection
– regularization
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Information value
• Let’s first try to select the basis functions independently

of the classifier, i.e., gauge how “informative” they are in
general about the class label.

• Text classification example: x is a document and the basis
functions φ1(x), . . . ,φm(x) are “word indicators”

φi(x) =
{

1, if document x contains word i
0, otherwise

– each document is represented by a binary vector

φ(x) = [0 1 0 . . . 0 1]T︸ ︷︷ ︸
m bits

– we will derive a score for each feature (bit) based on how
much information it contains about the class label
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Information value cont’d
• Let’s focus on a single feature, e.g., the first one

φ1 : 0 1 0 . . . 1
y : −1 −1 1 . . . 1

To assess how the feature values relate to the labels
we can calculate the frequency of occurence of different
combinations of values: P̂ (y), P̂ (φ1), P̂ (φ1, y).

For example

P̂ (φ1 = 0, y = 1) =
# of docs such that φ1(x) = 0 and y = 1

n
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Information value cont’d
• Let’s focus on a single feature, e.g., the first one

φ1 : 0 1 0 . . . 1
y : −1 −1 1 . . . 1

To assess how the feature values relate to the labels
we can calculate the frequency of occurence of different
combinations of values: P̂ (y), P̂ (φ1), P̂ (φ1, y).

• The mutual information score for each feature is given by:

I(φ1; y) =
∑

φ1∈{0,1}

∑
y∈{−1,1}

P̂ (φ1, y) log2
P̂ (φ1, y)

P̂ (y)P̂ (φ1)

This score is zero if the label is independent of the feature
value; large (but ≤ 1) if they are deterministically related.
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Selection by information value
• We rank the features according to their mutual information

scores (in the descending order of the score):

I(φ1; y) =
∑

φ1∈{0,1}

∑
y∈{−1,1}

P̂ (φ1, y) log2
P̂ (φ1, y)

P̂ (y)P̂ (φ1)

– how many features to include?
– redundant features?
– coordination among the features?
– which classifier can make use of these features?

Tommi Jaakkola, MIT CSAIL 8

Greedy selection
1. Find s1 and w = [w0, w1]T such that

P (y = 1|x,w) = g
(
w0 + w1φs1(x)

)
leads to the best classifier.
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Greedy selection
1. Find s1 and w = [w0, w1]T such that

P (y = 1|x,w) = g
(
w0 + w1φs1(x)

)
leads to the best classifier.

2. Find s2 and w = [w0, w1, w2]T such that

P (y = 1|x,w) = g
(
w0 + w1φs1(x) + w2φs2(x)

)
gives the best performing classifier.
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Greedy selection
1. Find s1 and w = [w0, w1]T such that

P (y = 1|x,w) = g
(
w0 + w1φs1(x)

)
leads to the best classifier.

2. Find s2 and w = [w0, w1, w2]T such that

P (y = 1|x,w) = g
(
w0 + w1φs1(x) + w2φs2(x)

)
gives the best performing classifier.

3. Etc.

- stopping criterion?
- over-fitting?
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Regularization
• We can also consider all of the basis functions at once

P (y = 1|x,w) = g
(
w0 + w1φ1(x) + . . . + wmφm(x)

)
and introduce a regularization penalty that tries to set the
weights to zero unless the corresponding basis functions are
useful.
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Regularization
• We can also consider all of the basis functions at once

P (y = 1|x,w) = g
(
w0 + w1φ1(x) + . . . + wmφm(x)

)
and introduce a regularization penalty that tries to set the
weights to zero unless the corresponding basis functions are
useful.

J(w;λ) =
n∑

i=1

− log P (yi|x,w) + λ
m∑

i=1

|wi|

In other words, we regularize the 1-norm (not Euclidean
norm) of the weights; w0 is not penalized
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Regularization
• The effect of the regularization penalty depends on its

derivative at w ≈ 0
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J(w;λ) =
n∑

i=1

− log P (yi|x,w) + λ
m∑

i=1

|wi|
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Combination of methods
• Similarly to feature selection we can select simple “weak”

classification or regression methods and combine them into
a single “strong” method

• Example techniques
– forward fitting (regression)
– boosting (classification)
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Combination of regression methods
• We want to combine multiple “weak” regression methods

into a single “strong” method

f(x) = f(x; θ1) + . . . + f(x; θm)

• Suppose we are given a family simple regression methods

f(x; θ) = w φk(x)

where θ = {k, w} specifies the identity of the basis function
as well as the associated weight.

• Forward-fitting: sequentially introduce new simple regression
methods to reduce the remaining prediction error
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Forward fitting cont’d
Simple family: f(x; θ) = wφk(x), θ = {k, w}

• We can fit each new component to reduce the prediction
error; in each iteration we solve the same type of estimation
problem

Step 1: θ̂1 ← argmin
θ

n∑
i=1

(yi − f(xi; θ))2
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Forward fitting cont’d
Simple family: f(x; θ) = wφk(x), θ = {k, w}

• We can fit each new component to reduce the prediction
error; in each iteration we solve the same type of estimation
problem

Step 1: θ̂1 ← argmin
θ

n∑
i=1

(yi − f(xi; θ))2

Step 2: θ̂2 ← argmin
θ

n∑
i=1

(yi − f(xi; θ̂1)︸ ︷︷ ︸
error

−f(xi; θ))2
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Forward fitting cont’d
Simple family: f(x; θ) = wφk(x), θ = {k, w}

• We can fit each new component to reduce the prediction
error; in each iteration we solve the same type of estimation
problem

Step 1: θ̂1 ← argmin
θ

n∑
i=1

(yi − f(xi; θ))2

Step 2: θ̂2 ← argmin
θ

n∑
i=1

(yi − f(xi; θ̂1)︸ ︷︷ ︸
error

−f(xi; θ))2

Step 3: . . .

• The resulting combined regression method

f̂(x) = f(x; θ̂1) + . . . + f(x; θ̂m)

has much lower (training) error.
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Forward fitting: example
f(x; θ) = wxk, where θ = {w, k}.
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