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CsAIL Topics
o Feature selection
— motivation, examples
— information value, greedy selection, regularization

e Combination methods
— forward/backward fitting

— boosting
Tommi Jaakkola, MIT CSAIL 2
CsAIL Feature selection CsAIL Feature selection
e Suppose we consider only a finite collection of possible basis e Suppose we consider only a finite collection of possible basis
functions, ¢;(x), i = 1,...,m, such as the input components functions, ¢;(x), i = 1,...,m, such as the input components
¢L(X) = Tj- ¢Z(X) = ;.

e We try to find a small subset S of basis functions that are
sufficient to solve the (regression or) classification problem:

e We try to find a small subset S of basis functions that are
sufficient to solve the (regression or) classification problem:

k
k
Ply=1|x,w) = g( wg + w;ds. (X
Ply=1lx,w) = g(wo +Zwi¢si(x)) (y |, w) 9( 0 ; i ))
i=1 . . .
) ) ) where the indexes S = {si,...,sx} identify the selected
where the indexes S = {si1,...,s} identify the selected basis functions.
basis functions. i ) ) )
e There are many ways to find appropriate basis functions:
— information value
— greedy selection
— regularization
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CsatL Information value CsatL Information value cont’d

e Let's first try to select the basis functions independently
of the classifier, i.e., gauge how “informative” they are in
general about the class label.

e Text classification example: x is a document and the basis
functions ¢1(x), ..., ¢m(x) are “word indicators”

1, if document x contains word i
di(x) = ,
0, otherwise

— each document is represented by a binary vector

$(x)=[010 ... 01]"

m bits

— we will derive a score for each feature (bit) based on how
much information it contains about the class label
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e Let's focus on a single feature, e.g., the first one
¢1: 0 10 ... 1
y: -1 -1 1 ... 1

To assess how the feature values relate to the labels
we can calculate the frequency of occurence of different
combinations of values: P(y), P(¢1), P(é1,).

For example

. _ # of docs such that ¢1(x) =0and y =1

n
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A Information value cont’d

M
1q 1

e Let's focus on a single feature, e.g., the first one

dr: 0 10 ...1
y: -1 -1 1 ... 1

To assess how the feature values relate to the labels
we can calculate the frequency of occurence of different
combinations of values: P(y), P(¢1), P(é1,).

e The mutual information score for each feature is given by:

P(¢1,y)
P(y)P(41)

This score is zero if the label is independent of the feature
value; large (but < 1) if they are deterministically related.

Ioy)= Y. Y, Ploy)logy5— =~

¢1€{0,1} ye{-1,1}
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Fsan Selection by information value

e We rank the features according to their mutual information
scores (in the descending order of the score):

j2
Igy)= Y. Y, Ploy)logy5— =" (¢1’y)
$1€10,1} ye{—1,1} P(y)P(¢1

— how many features to include?

— redundant features?

— coordination among the features?

— which classifier can make use of these features?
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Fsan Greedy selection
1. Find 51 and w = [wg, w;]T such that

P(y _ 1‘X, W) = g(wo + wl¢s1(x) )

leads to the best classifier.
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Fsan Greedy selection

1. Find 51 and w = [wg, w;]” such that
Ply=1lx,w) = g(wo + w165, (x) )
leads to the best classifier.

2. Find s3 and w = [wg, w1, w2]T such that
Ply=1x,w) = g(wo + wl(bsl(x) + w2¢32(x) )

gives the best performing classifier.
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Fsan Greedy selection
1. Find 51 and w = [wg, w;]” such that

M
1q 1

P(y = 1|x,w) = g(wo + w165, (%) )
leads to the best classifier.
2. Find s3 and w = [wg, w1, w2]T such that
P(y = 1|x,w) = g(wo + w16s, (%) + w2gs,(x) )
gives the best performing classifier.

3. Etc.

- stopping criterion?
- over-fitting?
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oA Regularization

e We can also consider all of the basis functions at once

o WP (X) )

and introduce a regularization penalty that tries to set the
weights to zero unless the corresponding basis functions are
useful.

Ply=1lx,w) = g(wo + wiPr(x) +
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oA Regularization
e We can also consider all of the basis functions at once

Py =11x,w) = g(wo + w191(x) + ... + Wy P (x) )

and introduce a regularization penalty that tries to set the
weights to zero unless the corresponding basis functions are
useful.

n m

J(w; ) = Z —log P(yi|x,w) + A Z |w;|

i=1 i=1
In other words, we regularize the 1-norm (not Euclidean
norm) of the weights; wq is not penalized
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oA Regularization

e The effect of the regularization penalty depends on its
derivative at w ~ 0

-2 -1 0 1 2
w?/2 versus |w|

n

J(wiA) =Y —log Py, w) + A _ |wil

i=1 i=1
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oA Combination of methods
e Similarly to feature selection we can select simple “weak”
classification or regression methods and combine them into
a single “strong” method

e Example techniques
— forward fitting (regression)
— boosting (classification)
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e, Combination of regression methods

e We want to combine multiple “weak” regression methods
into a single “strong” method

f(x) = f061) + ...+ f(x0m)
e Suppose we are given a family simple regression methods

f(x0) = wdr(x)

where 6 = {k, w} specifies the identity of the basis function
as well as the associated weight.

e Forward-fitting: sequentially introduce new simple regression
methods to reduce the remaining prediction error
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Esan Forward fitting cont’d
Simple family: f(x;0) = weg(x), 6 = {k,w}
e We can fit each new component to reduce the prediction

error; in each iteration we solve the same type of estimation
problem

b : e )2
Step1: 64 argmean(yz f(x4;0))

i=1
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Esan Forward fitting cont’d

Simple family: f(x;0) = wor(x), 0 = {k,w}

e We can fit each new component to reduce the prediction
error; in each iteration we solve the same type of estimation
problem

Y : o L )2
Step1: 6, argmgmi;(yl f(xi;0))

Step 2: 0o — argmain Z(yl — f(x él) —f(x:;0))?

i=1 error
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=T Forward fitting cont’d

Simple family: f(x;0) = wor(x), 0 = {k,w}

e We can fit each new component to reduce the prediction
error; in each iteration we solve the same type of estimation
problem

Y : o L ))2
Step1: 6, argmo}n;(yz f(xi;0))

Step2: 0y argrrbin Z(yz — f(xi361) — f(x:;0))?
i=1 ervor
Step 3:

e The resulting combined regression method
F) = F(x:00) + o+ (x5 60m)
has much lower (training) error.
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Sesae Forward fitting: example

f(z;0) = wak, where 0 = {w, k}.

R R T
deg=2, w=0.95

S o5 o o8
deg=5, w=-0.00
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