Information value

- Let’s first try to select the basis functions independently of the classifier, i.e., gauge how “informative” they are in general about the class label.

- Text classification example: x is a document and the basis functions \(\phi_1(x), \ldots, \phi_m(x) \) are “word indicators”

\[
\phi_i(x) = \begin{cases}
1, & \text{if document x contains word } i \\
0, & \text{otherwise}
\end{cases}
\]

- each document is represented by a binary vector

\[
\phi(x) = \begin{bmatrix} 0 & 1 & 0 & \ldots & 0 & 1 \end{bmatrix}^T
\]

- we will derive a score for each feature (bit) based on how much information it contains about the class label

Feature selection

- Suppose we consider only a finite collection of possible basis functions, \(\phi_i(x), i = 1, \ldots, m \), such as the input components \(\phi_i(x) = x_i \).

- We try to find a small subset \(S \) of basis functions that are sufficient to solve the (regression or) classification problem:

\[
P(y = 1|x, w) = g\left(w_0 + \sum_{i=1}^{k} w_i \phi_{s_i}(x) \right)
\]

where the indexes \(S = \{s_1, \ldots, s_k\} \) identify the selected basis functions.

Feature selection cont’d

- Let’s focus on a single feature, e.g., the first one

\[
\phi_1 : \begin{bmatrix} 0 & 1 & 0 & \ldots & 0 & 1 \end{bmatrix}^T
\]

\[
y : \begin{bmatrix} \text{-1} & \text{-1} & 1 & \ldots & 1 \end{bmatrix}^T
\]

To assess how the feature values relate to the labels we can calculate the frequency of occurrence of different combinations of values: \(\hat{P}(y), \hat{P}(\phi_1), \hat{P}(\phi_1, y) \).

For example

\[
\hat{P}(\phi_1 = 0, y = 1) = \frac{\# \text{ of docs such that } \phi_1(x) = 0 \text{ and } y = 1}{N}
\]
Information value cont’d

• Let’s focus on a single feature, e.g., the first one

\[\phi_1: \ 0 \ 1 \ 0 \ \ldots \ 1 \]
\[y: \ -1 \ -1 \ 1 \ \ldots \ 1 \]

To assess how the feature values relate to the labels we can calculate the frequency of occurrence of different combinations of values: \(\hat{P}(y), \hat{P}(\phi_1), \hat{P}(\phi_1, y). \)

• The mutual information score for each feature is given by:

\[I(\phi_1; y) = \sum_{\phi_1 \in \{0,1\}} \sum_{y \in \{-1,1\}} \frac{\hat{P}(\phi_1, y)}{P(y)\hat{P}(\phi_1)} \log_2 \frac{\hat{P}(\phi_1, y)}{P(y)\hat{P}(\phi_1)} \]

This score is zero if the label is independent of the feature value; large (but \(\leq 1 \)) if they are deterministically related.

Selection by information value

• We rank the features according to their mutual information scores (in the descending order of the score):

\[I(\phi_1; y) = \sum_{\phi_1 \in \{0,1\}} \sum_{y \in \{-1,1\}} \frac{\hat{P}(\phi_1, y)}{P(y)\hat{P}(\phi_1)} \log_2 \frac{\hat{P}(\phi_1, y)}{P(y)\hat{P}(\phi_1)} \]

- how many features to include?
- redundant features?
- coordination among the features?
- which classifier can make use of these features?

Greedy selection

1. Find \(s_1 \) and \(w = [w_0, w_1]^T \) such that

\[P(y = 1 | x, w) = g(w_0 + w_1 \phi_{s_1}(x)) \]

leads to the best classifier.

Greedy selection

1. Find \(s_1 \) and \(w = [w_0, w_1]^T \) such that

\[P(y = 1 | x, w) = g(w_0 + w_1 \phi_{s_1}(x)) \]

leads to the best classifier.

2. Find \(s_2 \) and \(w = [w_0, w_1, w_2]^T \) such that

\[P(y = 1 | x, w) = g(w_0 + w_1 \phi_{s_1}(x) + w_2 \phi_{s_2}(x)) \]

gives the best performing classifier.

Greedy selection

1. Find \(s_1 \) and \(w = [w_0, w_1]^T \) such that

\[P(y = 1 | x, w) = g(w_0 + w_1 \phi_{s_1}(x)) \]

leads to the best classifier.

2. Find \(s_2 \) and \(w = [w_0, w_1, w_2]^T \) such that

\[P(y = 1 | x, w) = g(w_0 + w_1 \phi_{s_1}(x) + w_2 \phi_{s_2}(x)) \]

gives the best performing classifier.

3. Etc.
- stopping criterion?
- over-fitting?

Regularization

• We can also consider all of the basis functions at once

\[P(y = 1 | x, w) = g(w_0 + w_1 \phi_1(x) + \ldots + w_m \phi_m(x)) \]

and introduce a regularization penalty that tries to set the weights to zero unless the corresponding basis functions are useful.
Regularization
- We can also consider all of the basis functions at once
 \[P(y = 1|x, w) = g\left(w_0 + w_1 \phi_1(x) + \ldots + w_n \phi_n(x) \right) \]
 and introduce a regularization penalty that tries to set the weights to zero unless the corresponding basis functions are useful.
 \[J(w; \lambda) = \sum_{i=1}^{n} - \log P(y_i|x, w) + \lambda \sum_{i=1}^{m} |w_i| \]
In other words, we regularize the 1-norm (not Euclidean norm) of the weights; \(w_0 \) is not penalized.

Combination of methods
- Similarly to feature selection we can select simple “weak” classification or regression methods and combine them into a single “strong” method.
- Example techniques
 - forward fitting (regression)
 - boosting (classification)

Combination of regression methods
- We want to combine multiple “weak” regression methods into a single “strong” method
 \[f(x) = f(x; \theta_1) + \ldots + f(x; \theta_m) \]
- Suppose we are given a family simple regression methods
 \[f(x; \theta) = w \phi_k(x) \]
 where \(\theta = \{k, w\} \) specifies the identity of the basis function as well as the associated weight.
- **Forward-fitting:** sequentially introduce new simple regression methods to reduce the remaining prediction error.

Forward fitting cont’d
Simple family: \(f(x; \theta) = w \phi_k(x) \), \(\theta = \{k, w\} \)
- We can fit each new component to reduce the prediction error; in each iteration we solve the same type of estimation problem

Step 1: \(\hat{\theta}_1 \leftarrow \arg \min_\theta \sum_{i=1}^{n} (y_i - f(x; \theta))^2 \)

Step 2: \(\hat{\theta}_2 \leftarrow \arg \min_\theta \sum_{i=1}^{n} \frac{(y_i - f(x; \hat{\theta}_1) - f(x; \theta))^2}{\text{error}} \)
Forward fitting cont’d

Simple family: \(f(x; \theta) = w \phi_k(x) \), \(\theta = \{ k, w \} \)

- We can fit each new component to reduce the prediction error; in each iteration we solve the same type of estimation problem

Step 1: \(\hat{\theta}_1 \leftarrow \arg\min_{\theta} \sum_{i=1}^{n} (y_i - f(x_i; \theta))^2 \)

Step 2: \(\hat{\theta}_2 \leftarrow \arg\min_{\theta} \sum_{i=1}^{n} \frac{(y_i - f(x_i; \hat{\theta}_1) - f(x_i; \theta))^2}{\text{error}} \)

Step 3: \(\ldots \)

- The resulting combined regression method

\(\hat{f}(x) = f(x; \hat{\theta}_1) + \ldots + f(x; \hat{\theta}_m) \)

has much lower (training) error.

\[\text{example} \]

\(f(x; \theta) = wx^k \), where \(\theta = \{ w, k \} \).