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e

CSAIL TOpiCS

e Feature selection
— motivation, examples
— information value, greedy selection, regularization

e Combination methods
— forward/backward fitting
— boosting
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e

CsAIL Feature selection
e Suppose we consider only a finite collection of possible basis
functions, ¢;(x), i = 1,...,m, such as the input components
¢i(X) = x;.

e We try to find a small subset S of basis functions that are
sufficient to solve the (regression or) classification problem:

k
P(y — 1’X7W> — g(UJ() + szgbsz(x))

where the indexes S = {s1,...,sx} identify the selected
basis functions.
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ﬁéﬁu Feature selection
e Suppose we consider only a finite collection of possible basis
functions, ¢;(x), i =1,...,m, such as the input components

e We try to find a small subset S of basis functions that are
sufficient to solve the (regression or) classification problem:

k
P(y — 1’X7W> — g(wO + szgbsz(x))

where the indexes S = {s1,...,sx} identify the selected
basis functions.

e There are many ways to find appropriate basis functions:
— information value
— greedy selection
— regularization
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ﬁéﬁu Information value

e Let's first try to select the basis functions independently
of the classifier, i.e., gauge how “informative” they are in
general about the class label.

e Text classification example: x is a document and the basis
functions ¢1(x), ..., ¢m(x) are “word indicators”

¢i(x) =

1, if document x contains word ¢
0, otherwise

— each document is represented by a binary vector

¢(x)=[010...01]"

mfits

— we will derive a score for each feature (bit) based on how
much information it contains about the class label
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e

CSAIL Information value cont’d
e Let's focus on a single feature, e.g., the first one
o1 : 0 1 0 ... 1
y: —1 —1 1 ... 1

To assess how the feature values relate to the labels
we can calculate the frequency of occurence of different
combinations of values: P(y), P(é1), P(é1,y).

For example

# of docs such that ¢1(x) =0and y =1

p(¢1zoay:1):

n
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e

CSAIL Information value cont’d

e Let's focus on a single feature, e.g., the first one

d1: 0 10 ... 1
y: —1 —1 1 ... 1

To assess how the feature values relate to the labels
we can calculate the frequency of occurence of different
combinations of values: P(y), P(é1), P(é1,y).

e The mutual information score for each feature is given by:

P
qbla Z Z P le Y 10g2 (Qb/\ )
$1€{0,1} ye{—1,1} ( ) ( )

This score is zero if the label is independent of the feature
value; large (but < 1) if they are deterministically related.
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@cguﬁu Selection by information value

e We rank the features according to their mutual information
scores (in the descending order of the score):

P(¢1,y)
I(¢1;9) P(¢1,y)logy ——
1 162{(;1}?;6{2; 1} ) i P(y)P(¢1)

— how many features to include?

— redundant features?

— coordination among the features?

— which classifier can make use of these features?
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e

CSAIL Greedy selection

1. Find s; and w = [wg, wq]? such that

Py = 1|x,w) = g(wo + wi¢s, (%) )

leads to the best classifier.
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e

CSAIL Greedy selection

1. Find s; and w = [wg, wq]? such that

Ply = 1jx,w) = g(wo + w1, (x) )
leads to the best classifier.

2. Find s and w = [wg, w1, wo]? such that

Ply=1x,w) = g(wo + wis, (X) + w2¢32(X))

gives the best performing classifier.
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ﬁcgsju Greedy selection

1. Find s; and w = [wg, wq]? such that
Py = 1%, w) = g(wo + ey (x) )

leads to the best classifier.

2. Find s and w = [wg, w1, wo]? such that

Ply=1x,w) = g(wo + Wi, (X) + Wads,(X) )
gives the best performing classifier.

3. Etc.

- stopping criterion?
- over-fitting?
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e

CSAIL RegUIarization

e \We can also consider all of the basis functions at once

Py =1[x,w) = g(wo +widr(x) + ... + wmgbm(x))

and introduce a regularization penalty that tries to set the
weights to zero unless the corresponding basis functions are
useful.
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e

CSAIL RegUIarization

e \We can also consider all of the basis functions at once

Py =1[x,w) = g(wo +widr(x) + ... + wm¢m(X))

and introduce a regularization penalty that tries to set the
weights to zero unless the corresponding basis functions are
useful.

n

J(w;A) = Z —log P(yi|x, w) + )\Z |w;|

In other words, we regularize the 1-norm (not Euclidean
norm) of the weights; w is not penalized
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e

CSAIL RegUIarization

e The effect of the regularization penalty depends on its
derivative at w = 0

2

1.5¢

0.5¢

9 ) 0 1 2
w?/2 versus |w)|

n

J(w; A) = Z —log P(yi|x, w) + )\Z |w;]
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@Z%%L Combination of methods

e Similarly to feature selection we can select simple “weak”
classification or regression methods and combine them into

a single “strong’ method

e Example techniques
— forward fitting (regression)
— boosting (classification)
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e

CSAIL Combination of regression methods

e \We want to combine multiple “"weak” regression methods
into a single “strong” method

F(x) = f(x:600) + ..+ F(x:0)

e Suppose we are given a family simple regression methods

f(x;0) = w dr(x)

where 6 = {k, w} specifies the identity of the basis function
as well as the associated weight.

e forward-fitting: sequentially introduce new simple regression
methods to reduce the remaining prediction error
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e

CSAIL Forward fitting cont’d
Simple family: f(x;0) = wor(x), 0 ={k,w}

e We can fit each new component to reduce the prediction
error; in each iteration we solve the same type of estimation
problem

. 2 . o . 2
Step 1: 61 — argmin > (i — f(xi:0))

1=1
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@E Forward fitting cont’d

CSAIL
Simple family: f(x;60) = wor(x), 0 = {k,w}
e We can fit each new component to reduce the prediction
error; in each iteration we solve the same type of estimation
problem

. ) : o B 2
Step 1: 61 «— argmin > (i — f(xi0))

1=1

Step 2: 6y — argmmy — fx; 91) —f(x4;0))°

1=1 error
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e

CsAIL Forward fitting cont’d
Simple family: f(x;0) = wor(x), 0 ={k,w}

e We can fit each new component to reduce the prediction
error; in each iteration we solve the same type of estimation
problem

- ) 1 . — . 2
Step 1: 01 < argmin > (Wi — f(x:0))

1=1

Step 2: ég «— argmin S:(gz — f(xi; ell—f(xﬁ ‘9))2
e error
Step 3:

e [he resulting combined regression method

f(x) = f(x:601) + ...+ f(;0m)
has much lower (training) error.
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CsAlL Forward fitting: example
f(x;0) = wz®, where 0 = {w, k}.
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