

MACSYMA: Symbolic Mathematics

- Goals of the Project
- System Description
- Lessons

Goals of Project

To help applied mathematicians in solving problems
$\int \frac{x^{4}}{\left(1-x^{2}\right)^{\frac{5}{2}}}=$

SAINT: Symbolic Automatic Integrator

$$
\int \frac{x^{4}}{\left(1-x^{2}\right)^{\frac{5}{2}}} d x
$$

Try $y=\arcsin x$, yielding:

$$
\int \frac{\sin ^{4} y}{\cos ^{4} y} d y
$$

SAINT

Some interesting statistics:

Saint's Average Performance				
	Unused			Heuristic
	Subgoals	Subgoals	Level	Level

Sin

- Steps

1. Derivative divides
2. 11 specific methods

- Substantial effort in deciding which to apply
- Largely organized around recognizing the form of the problem

3. General purpose methods (e.g., search)

- Note the sequence.
- "We feel that too few AI programs employ the fact that in many problem domains there exist methods which solve a large number of problems quickly."
6.871- Lecture 3

The Mindset Shift

SAINT will frequently [need to] explore several paths to a solution .. because it lacks the powerful machinery that SIN possesses.

One of the striking features of these programs is how little knowledge they require in order to obtain a solution. Persson in his recent thesis dealing with "sequence prediction" seems to feel that placing a great deal of context dependent information in a program would be "cheating." This emphasis seems to be useful when one desires to study certain problem solving mechanisms in as pure a manner as possible.

We, on the other hand, intended no such study of specific problem solving mechanisms, but mainly desired a powerful integration program which behaved closely to our conception of expert human integrators.

SIN, we hope, signals a return to an examination of complex problem domains.
-- Moses, 1963
[emphasis added]
6.871-Lecture 3

Macsyma Organization

- 5000 operations
- User-driven
- Independent operations

Macsyma Lessons

Keep the system modular and loosely coupled

- It is sometimes cheaper to translate one representation to another in order to solve the problem more efficiently
- Use of a common language for communication makes this approach tractable (eg, dense and sparse polynomials)
- Do not duplicate knowledge
- leads to unmanageable system
6.871- Lecture 3

Symbolic Math Lessons

- Character of the problem changes as knowledge evolves - SAINT
" Worked as people appeared to: extensive search and backtracking - SIN
" Almost always correct on the first guess: found the sources of power in the domain
- RISCH: Algorithmic Integration
» Guaranteed to succeed if the expression is integrable
- Uses very special representation
- Computationally complex and expensive
- Process not understandable to users but provably correct.

Dendral: Structure Elucidation

- Given:
- Empirical Formula: $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}$ (total $\mathrm{MW}=142$)
- Known Structure Constraints
- Mass Spectrum

How to Proceed?

- Given:
- Empirical Formula: $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}$ (total $\mathrm{MW}=142$)
- Known Structure Constraints

Generate and Test

For $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}$ two possible structures are

6.871-Lecture 3
${ }^{26}$

The Generator Should Be:

How Can the Program Plan Its

Attack?

What should the program know?
Rules: spectrum features \Rightarrow molecule class
IF
There are peaks at M1 and M2 such that
$\mathrm{M} 1+\mathrm{M} 2=\mathrm{MW}+28$ and
M 1 is high and M 2 is high
THEN The structure is one of the ketones
IF
There is a high peak at 44 and
there is a high peak at M1-44
THEN The structure is one of the aldehydes

Efficiency and ...

If high peak at 57 and high peak at 113
Then
ketone
If high peak at 57 and high peak at 98
Then ether

Level of Representation

IF
There are peaks at M1 and M2 such that $M 1+M 2=M W+28$ and M1 is high and M2 is high
THEN
The structure is one of the ketones

In the Knowledge Lies the Power

```
Empirical formula: C C }20\mathrm{ H43 N
    Information Sources Possible Structures
    Topology
        42,867,912
    Chemistry
    Mass Spectrum
    Chemist's Information
    NMR
```


Building the Program Advances The Field

- The SAINT, SIN, MACSYMA, Risch progression
- Dendral's accumulation, rationalization and development of chemistry knowledge.

