Representations for KBS:

Logic: When Sound Deduction is Required
Spring Term 3/7/200
6.871 Knowledge Based Systems
Randall Davis Instructor
Howard Shrobe Lecturer

Syntax
Proofs
Semantics
Sound Inference and Complete Inference
What Properties hold?
The Language as a Representation
Comprehensiveness
Ambiguity
Lack of Commitment
Compromises between generality and tractability
Some Applications in the logic spirit
Wrap-up, What pair of glasses is this?

What is Logic?

A "Universal" Language"
A formal Inference system that "preserves truth"
Not a guarantee of correct answers.
General spirit is to "pour in the axioms" and grind out the theorems.
E.g. to do inference, start with axioms and grind out consequences. To plan, put in the planning axioms and grind out the plans.
To do diagnosis, put in the description of the device and grind out the diagnosis.

A means for formally relating syntax to semantics (or denotation) or, put another way: The study of the relationship between inference and entailment.

Predicate Logic Syntax Solves These Problems

- The unit of representation is the Statement which is the application of a predicate to a set of arguments: John Loves Mary
- What can you say in Mycin-like rule languages?
- There are "Contexts" meaning, roughly, objects
- Rules refer to one of them
- You can talk about the Values of Attributes of Objects
- You can compare Object Attributes Values to Numeric Quantities
- What can't you express?
- Relationships between the values of attributes of one object and the values of attributes of another object.
- The location of the infectious agent is within the bloodstream of the host.
- Infectious agent- 1 infected host- 1 is 2 days earlier than infectious agent- 2 infected host-2.
- Quantified things:
- Every infections agent in host- 1 is a coccus
- There is an infectious agent in host- 1 that is a coccus

Syntax Examples

(Loves Bob Mary) (Loves (Father Bob) (Mother Judy))	Bob Loves Mary
	The Father of Bob
	Loves the mother of Judy
(Implies (exercises Bob) (Healthy Bob))	If Bob exercises Bob is Healthy
(Forall (?y) (Thereis (?x) (Loves ?x ?y)))	Everybody has somebody who loves them
(Thereis (?y) (Forall (?x) (Loves ?x ?y))	There is somebody whom everybody loves
(Forall (?block ?robot ? $\mathbf{t - 1}^{\text {] }}$	
(implies (and (cleartop ?block ? t -1)	
(handempty ?robot ? $\mathrm{t}-1$))	
(and (possible-successor ? $\mathrm{t}-2$? $\mathrm{t}-1$)	
(holding ?robot ?	

at any time that the robot's hand is empty and there is nothing on top of the block, the robot can pick up the block and it will be holding the block in the resulting situation.

An Inference System

- A precise notion of "Follows From"
- Deduction Rules
- 2 for each connective: An introduction rule and an elimination rule
- And Elimination: From (And A B) you can deduce A
- Modus Ponens:
- From (IMPLIES P Q) and \mathbf{P} you can deduce \mathbf{Q}
- Universal Instantiation:
- (FORALL (X) (P X)) you can deduce (P A) for any A
- Axioms: Statements that are given as a priori true
- A Proof is:

A Sequence of statements, such that each element is either: An Axiom
An Assumption warranted by a proof rule
Or the results of applying a deduction rule to previous statements

- Theorem: Any conclusion of a proof.
- Theorems are statements we're forced to believe if we believe the axioms

Quantifier Rules (2)

Existential Instantiation	Existential Generalization
i (Thereis (x) (P ...))	i (P...)
$j[z / x](P \ldots) \quad$ (EI i)	j (Thereis (x)[x/a](P ...)) (EG i)
where z is a brand new variable	where a is any term at all

Alphabetic Variance
i (Q (x)(P ...))
$j(Q(z)[z / x](P \ldots)) \quad(A V i)$
where Q is either quantifier and $[\mathrm{z} / \mathrm{x}]$ is a valid substitution.

A Substitution of $\underline{\mathbf{a}}$ for $\underline{\mathbf{x}}$ in the statement $(\mathrm{P} x)$ is written $[\mathrm{a} / \mathrm{x}](\mathrm{P} x)$.
It means that every free occurrence of $\underline{\mathbf{x}}$ is replaced by $\underline{\underline{a}}$ in the statement ($\mathrm{P} \mathbf{x}$).
The substitution is only valid if no occurrence of $\underline{\mathbf{a}}$ is "captured" (i.e. whenever \underline{a} replaces a fre

For Example:
$[\mathrm{a} / \mathrm{x}]$ (Forall (y)(P x y)) $=($ Forall (y) (Pay))
but $[y / x]$ (Forall $(y)(P x y))$ is not a valid substitution

Logic: Page 9

Derived Rules

An Example Proof

1. Show (Implies (And P (Or Q R)) (Or (And P Q) (And PR)))	
2. I (And P (Or Q R))	Assumption motivated by 1
3. IP	And Elimination 2
4. I (Or Q R)	And Elimination 2
5. I Show (Implies Q (Or (And P Q) (And PR)))	trying for Or Elimination from 4
6. । I Q	Assumption motivated by 5
7. I I (And P Q)	And Introduction 3,6
8. I I (Or (And P Q) (And P R))	Or Introduction 7
9. I (Implies Q (Or (And P Q) (And P R)))	Conditional Proof 8 (6)
10. I Show (Implies R (Or (And PQ) (And PR)))	trying for Or Elimination from 4
11. \| / R	Assumption motivated by 10
12.1 I (And P R)	And Introduction 3,11
13.1 (Implies R (And P P (And P))	Conditional Proof 13 (11)
$\begin{aligned} & \text { (Or (And P Q) (And P R))) } \\ & \text { 14. I (Or (And P Q) (And P R)) } \end{aligned}$	Or Elimination 4,9,13
15. (Implies (And P (Or Q R))	Conditional Proof 14 (2)

Another Proof	
1. Show (Implies (Thereis (?y) (Forall (?x) (P ?x ?y))) (Forall (?x) (Thereis (?y) (P ?x ?y))))	
2. \| (Thereis (?y) (Forall (?x) (P ?x ?y))	Assumption motivated by 1
3. \| (Forall (?x) (P ? $\mathrm{x} \mathrm{a)}$)	Existential Instantiation 2
4. \mid (Pba$)$	Universal Instantiation 3
5. ((Thereis (?w) (P b ?w)	Existential Generalization 4
6. \| (Thereis (?y) (P b ?y))	Alphabetic Variation 5
7. \| (Forall (?z) (Thereis (?y) (P?z ?y))	Universal Generalization 6
8. \| (Forall (?x) (Thereis (?y) (P ?x ? ${ }^{\text {a }}$))	Alphabetic Variation 7
(Forall (?x) (Thereis (?y) (P ?x ?y))))	Conditional Proof 8 (2)

Normal Form (2)

Order of Use of Identities:

1. Implication
2. Negations and deMorgan
3. Quantifers
4. Distribution

The end result is $(\mathrm{Q}(\mathrm{x})(\mathrm{Q}(\mathrm{y}) \ldots$ (And (0r S1 S2 S2) (Or (S3 S4)))
The S's are either positive or negative simple statements
The outermost Q's are all Forall and the inner Q's are Thereis.
Drop all the Thereis Q's replacing their variables by functions of the universally quantified variables.

Drop all the Forall Q's leaving the variables free.
Get a set of quantifier free disjunctions.

Resolution Rule

(Or PG)
(OR (Not Q) H)
If P and Q can be unified (with unifying substitution S)
then it is legal to infer
(OR G' H')
where G^{\prime} and H^{\prime} are the results of substituting Substitution S into G and H (respectively).

Unifying two statements means finding a substitution for the variables in the two statements such that the two statements are identical after the substitution is performed in each statement.

Horn Clauses: A Restriction to Rule-like Form

Suppose that after normalization all clauses have at most 1 positive statement
(Or p (not q) (notr) (nots) (not t))
where any of p q r st may contain with free variables
Then by implication identity this is the same as:
(implies (and qrst) p)
Or rewriting as a logical rule:
If and $\mathrm{q}, \mathrm{r}, \mathrm{s}, \mathrm{t}$
Then p

Mechanizing Logical Rules

- Two natural chaining methods:
- Forward, data driven, antecedent.
- Backward, goal driven, consequent.
- Examples:

If (and (Parent ?x ?y) (Parent ?y ?z))
Then (Grandparent ?x ?z)
If (and (Grandparent ?x ?y) (Gender ?x male))
Then (Grandfather ?x ? y)

Examples

- Forward Chaining:

Assert (Parent Abe Ike)
Assert (Gender Abe male)
Assert (Parent Ike Jake)
Deduce (Grandparent Abe Jake)
Deduce (Grandfather Abe Jake)

- Backward Chaining:

Same Facts, plus (Father Abe Ishmael)
Goal (Grandfather Abe Jake)
Goal (Grandparent Abe Jake)
Goal (Parent Abe ?y) matches Ishmael, Ike
Goal (Parent Ishmael ?y) no matches, fail backup
Goal (Parent Ike ?y) matches Jake, rule succeeds
Goal (Gender Abe Male) succeeds, rule succeeds.

Basics of Semantics

- A means for formally assigning "meaning" to syntax.
- More precisely: Semantics is a way of specifying which inferences are sanctioned, i.e. "entailment".
- A Model
- Domain (a mathematical set)
- Interpretation, a function that maps:
- Constant symbols of the syntax to elements of the domain
- Function symbols of the syntax to functions over the domain
- Predicate symbols of the syntax to predicates over the domain (note that this is a mapping from a set of arguments to true or false).
- Through the obvious compositions, a statement is mapped to true or false.
- A Model of a set of axioms is a model that maps all the axioms to True.

Validity and Provability

- Consider all models of a set of Axioms
- Consider those statements that are mapped into true in all these models
- These are called the Valid Statements.
- Consider the set of all statements provable by your inference system.
- These are called the Theorems.
- Two different notions
- We would like these to be the same sets of statements.
- If every valid statement is a theorem
- The system is called complete
- You can deduce what's true
- If every theorem is a valid statement
- The system is called consistent.
- You can make only sound deductions
- A logicians day is made when a proof of soundness and completeness is obtained.

What Formal Properties Hold? Decidability

- Is there an algorithm for deciding whether or not something is a theorem?
- The British Museum algorithm:
- A conceptual way to show that something is a theorem.
- Generate all possible proofs in order of increasing length.
- Stop when you get a proof with the intended theorem as its last line.
- What paradigm is this? How good is it?
- However:
- This doesn't solve the problem of decidability.
- Church, Turing and others showed that the language is rich enough to encode the workings of a Turing machine.
- Does this seem contradictory?

What Formal Properties Hold? Completeness and Consistency

- Is the system consistent?
- Yes (Hilbert and Ackerman).
- Is the system complete?
- Yes (Godel).
- What happens if you add some interesting axioms? For example, those for arithmetic (or those for List structure: cons, car, cdr).
- Godels' incompleteness theorem
- You can't be both consistent and complete.
- The language is rich enough to form a statement which says "I have no proof".

The Expressiveness of Logic

- Logic is intended to be a universal and therefore neutral formalism
- You pick the constants, functions and predicates to represent your ontology.
- Logic doesn't prevent you from doing what you want.
- Logic doesn't guide you about how to do this.
- Logic is very expressive
- Quantification
- Any kinds of statements you want
- Logic can capture ambiguity and partial information:
- Existential quantification
- (Thereis (x) (px))
- Disjunction
- (Orpq)

Using Logic in Practical Applications:

- Weaker logical systems seem to be strong enough in practice to be useful and yet still controllable.
- Logical Rule Languages are examples:
- A1 \& A2 \& ... \& An --> C1 \& ...
- The A's are called antecedents
- The B's are called consequents
- Forward Chaining: As facts are asserted, the LHS of all rules are checked for a consistent matching set. If so the RHS is asserted.
- Backward chaining: If you want to prove the RHS, try to prove the antecedents in the LHS.
- Examples:
- Prolog
- Kee's rule system
- ART
- Joshua

Logic : Page 26

Amex AA Rationale

- Human nature works against the credit authorizer:
- start-up transient to learn all the policies.
- a conservative mindset
- The job is high pressure, boring and not particularly well compensated.
- High turnover
- Amex goal was to get uniform behavior in accordance with company policies.
- The action to take is a logical consequence of the company's authorization rules.
- Reasonably simple, logical rules worked well for this.
- Prototype was more complicated than needed.

How well does this work in practice?

- Authorizer's assistant:
- Often's people's purchasing patterns are idiosyncratic.
- Holidays, vacations, etc. need to be understood
- These were captured fairly well in the ART rule system.
- Speed of deduction was very important.
- Control of reasoning was crucial.
- Getting to the data was a critical success factor
- Accessing IBM "databases" was the "make or break" part.
- Has worked enormously well in practice.
- 50% to 75% of Amex credit requests are automatically handled.
- Good advice given in the rest.
- British Nationality Act:
- Received Mindset: logic means correct, error free, "right the first time"
- But: Exploratory logic is a perfectly reasonable mindset.

How Well Does It Work In Practice?

Nationality Act:

- Negation was very tricky.
- Counterfactuals and non-monotonicity are problems.
- Choosing the right predicates (i.e., picking the ontology) was hard and experimental in character.
- Logic provided no guidance for how to do this.

